This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302498 #11 Aug 27 2018 01:53:12 %S A302498 1,2,3,4,5,7,8,9,11,16,17,19,23,25,27,31,32,41,49,53,59,64,67,81,83, %T A302498 97,103,109,121,125,127,128,131,157,179,191,211,227,241,243,256,277, %U A302498 283,289,311,331,343,353,361,367,401,419,431,461,509,512,529,547,563 %N A302498 Numbers that are a power of a prime number whose prime index is itself a power of a prime number. %C A302498 A prime index of n is a number m such that prime(m) divides n. %H A302498 Andrew Howroyd, <a href="/A302498/b302498.txt">Table of n, a(n) for n = 1..1000</a> %e A302498 49 is in the sequence because 49 = prime(prime(1)^2)^2. %e A302498 Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant constant-multiset multisystems. %e A302498 01: {} %e A302498 02: {{}} %e A302498 03: {{1}} %e A302498 04: {{},{}} %e A302498 05: {{2}} %e A302498 07: {{1,1}} %e A302498 08: {{},{},{}} %e A302498 09: {{1},{1}} %e A302498 11: {{3}} %e A302498 16: {{},{},{},{}} %e A302498 17: {{4}} %e A302498 19: {{1,1,1}} %e A302498 23: {{2,2}} %e A302498 25: {{2},{2}} %e A302498 27: {{1},{1},{1}} %e A302498 31: {{5}} %e A302498 32: {{},{},{},{},{}} %e A302498 41: {{6}} %e A302498 49: {{1,1},{1,1}} %e A302498 53: {{1,1,1,1}} %e A302498 59: {{7}} %e A302498 64: {{},{},{},{},{},{}} %t A302498 Select[Range[100],Or[#===1,PrimePowerQ[#]&&And@@(Or[#===1,PrimePowerQ[#]]&/@PrimePi/@FactorInteger[#][[All,1]])]&] %o A302498 (PARI) ok(n)={my(p); n == 1 || (isprimepower(n, &p) && (p == 2 || isprimepower(primepi(p))))} \\ _Andrew Howroyd_, Aug 26 2018 %Y A302498 Cf. A000961, A001222, A003963, A005117, A007716, A056239, A076610, A275024, A279789, A295920, A301763, A302242, A302243, A302492, A302493, A302496, A302497. %K A302498 nonn %O A302498 1,2 %A A302498 _Gus Wiseman_, Apr 09 2018