A302510 Number of n X 3 0..1 arrays with every element equal to 0, 1, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
3, 3, 11, 9, 14, 21, 28, 37, 51, 72, 100, 137, 188, 260, 360, 497, 685, 945, 1305, 1802, 2487, 3432, 4737, 6539, 9026, 12458, 17195, 23734, 32760, 45218, 62413, 86147, 118907, 164125, 226538, 312685, 431592, 595717, 822255, 1134940, 1566532
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..0..0. .0..0..1. .0..0..1 ..0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..1..0. .1..1..1. .1..1..1 ..0..1..0. .0..0..0. .0..1..0. .0..1..0. .0..1..0. .1..0..1. .1..0..1 ..0..1..0. .1..1..1. .0..0..0. .0..0..0. .0..0..0. .1..0..1. .1..0..1 ..0..1..0. .1..0..1. .0..1..1. .1..1..0. .1..1..0. .1..0..1. .1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A302515.
Formula
Empirical: a(n) = a(n-1) +a(n-4) for n>7.