This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302515 #4 Apr 09 2018 09:09:28 %S A302515 1,2,2,3,3,4,5,3,4,8,8,5,11,6,16,13,7,15,9,9,32,21,13,21,28,14,14,64, %T A302515 34,23,52,36,48,21,22,128,55,37,118,80,90,89,28,35,256,89,63,220,235, %U A302515 199,184,163,37,56,512,144,109,408,541,689,458,376,297,51,90,1024,233,183 %N A302515 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302515 Table starts %C A302515 ...1..2..3...5....8...13....21.....34......55......89......144.......233 %C A302515 ...2..3..3...5....7...13....23.....37......63.....109......183.......309 %C A302515 ...4..4.11..15...21...52...118....220.....408.....852.....1764......3460 %C A302515 ...8..6..9..28...36...80...235....541....1115....2554.....6095.....13920 %C A302515 ..16..9.14..48...90..199...689...2125....5410...13908....39850....114503 %C A302515 ..32.14.21..89..184..458..1784...7182...22544...67096...220654....775150 %C A302515 ..64.22.28.163..376.1088..4558..23944...95681..344525..1302832...5550086 %C A302515 .128.35.37.297..832.2651.12324..82857..414880.1775176..7735877..39371229 %C A302515 .256.56.51.544.1744.6257.32336.282857.1748514.8778929.44362463.272701915 %H A302515 R. H. Hardin, <a href="/A302515/b302515.txt">Table of n, a(n) for n = 1..511</a> %F A302515 Empirical for column k: %F A302515 k=1: a(n) = 2*a(n-1) %F A302515 k=2: a(n) = 2*a(n-1) -a(n-3) %F A302515 k=3: a(n) = a(n-1) +a(n-4) for n>7 %F A302515 k=4: a(n) = a(n-1) +2*a(n-3) +2*a(n-4) -a(n-6) -a(n-7) for n>10 %F A302515 k=5: a(n) = a(n-1) +6*a(n-3) +2*a(n-5) -12*a(n-6) -4*a(n-7) +8*a(n-9) for n>11 %F A302515 k=6: a(n) = a(n-1) +6*a(n-3) +5*a(n-4) +3*a(n-5) -8*a(n-6) -6*a(n-7) -3*a(n-8) for n>12 %F A302515 k=7: [order 15] for n>21 %F A302515 Empirical for row n: %F A302515 n=1: a(n) = a(n-1) +a(n-2) %F A302515 n=2: a(n) = a(n-1) +2*a(n-3) for n>5 %F A302515 n=3: a(n) = a(n-1) +2*a(n-3) +4*a(n-4) for n>7 %F A302515 n=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +5*a(n-4) -a(n-5) -5*a(n-6) -4*a(n-7) for n>10 %F A302515 n=5: [order 13] for n>17 %F A302515 n=6: [order 23] for n>29 %F A302515 n=7: [order 50] for n>55 %e A302515 Some solutions for n=5 k=4 %e A302515 ..0..0..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..0..1 %e A302515 ..1..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..0..1 %e A302515 ..1..0..1..0. .0..0..1..1. .0..1..0..1. .0..0..0..1. .0..1..0..1 %e A302515 ..1..0..1..0. .1..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1 %e A302515 ..1..0..0..0. .1..0..1..0. .0..0..0..1. .0..1..0..1. .0..1..0..1 %Y A302515 Column 1 is A000079(n-1). %Y A302515 Column 2 is A001611(n+1). %Y A302515 Row 1 is A000045(n+1). %Y A302515 Row 2 is A003227(n-1) for n>2. %K A302515 nonn,tabl %O A302515 1,2 %A A302515 _R. H. Hardin_, Apr 09 2018