A302519 Number of 6Xn 0..1 arrays with every element equal to 0, 1, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
32, 14, 21, 89, 184, 458, 1784, 7182, 22544, 67096, 220654, 775150, 2587038, 8302004, 27025136, 90376752, 301153260, 989265746, 3244058002, 10719499408, 35505656166, 117195031890, 386021758650, 1273341893876, 4206241844100
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0..1..0. .0..1..0..0..0. .0..1..0..1..0. .0..1..0..1..0 ..0..1..1..1..0. .0..1..0..1..0. .0..1..0..1..0. .0..1..1..1..0 ..0..0..0..1..0. .0..1..0..1..0. .0..0..1..1..0. .0..1..0..0..0 ..0..1..0..1..0. .0..1..0..1..0. .0..1..0..1..0. .0..1..0..1..0 ..0..1..0..1..0. .0..0..0..1..0. .0..1..0..1..0. .0..1..0..1..0 ..0..1..1..1..0. .1..1..0..1..0. .0..1..1..1..0. .0..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302515.
Formula
Empirical: a(n) = a(n-1) +2*a(n-2) +3*a(n-3) +46*a(n-4) +32*a(n-5) -18*a(n-6) -33*a(n-7) -230*a(n-8) -144*a(n-9) +146*a(n-10) +151*a(n-11) +360*a(n-12) +319*a(n-13) -195*a(n-14) -371*a(n-15) -150*a(n-16) -170*a(n-17) +50*a(n-18) +96*a(n-19) -45*a(n-20) +87*a(n-21) -3*a(n-22) -9*a(n-23) for n>29
Comments