cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302534 Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.

This page as a plain text file.
%I A302534 #5 Apr 10 2018 21:48:44
%S A302534 1,2,3,5,6,10,11,13,15,17,22,26,29,30,31,33,34,41,43,47,51,55,58,59,
%T A302534 62,66,67,73,79,82,83,85,86,93,94,101,102,109,110,113,118,123,127,134,
%U A302534 137,139,141,143,145,146,149,155,157,158,163,165,166,167,170,177
%N A302534 Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.
%C A302534 A prime index of n is a number m such that prime(m) divides n.
%e A302534 Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
%e A302534 01: {}
%e A302534 02: {{}}
%e A302534 03: {{1}}
%e A302534 05: {{2}}
%e A302534 06: {{},{1}}
%e A302534 10: {{},{2}}
%e A302534 11: {{3}}
%e A302534 13: {{1,2}}
%e A302534 15: {{1},{2}}
%e A302534 17: {{4}}
%e A302534 22: {{},{3}}
%e A302534 26: {{},{1,2}}
%e A302534 29: {{1,3}}
%e A302534 30: {{},{1},{2}}
%e A302534 31: {{5}}
%e A302534 33: {{1},{3}}
%e A302534 34: {{},{4}}
%e A302534 41: {{6}}
%e A302534 43: {{1,4}}
%e A302534 47: {{2,3}}
%e A302534 51: {{1},{4}}
%e A302534 55: {{2},{3}}
%e A302534 58: {{},{1,3}}
%e A302534 59: {{7}}
%e A302534 62: {{},{5}}
%e A302534 66: {{},{1},{3}}
%t A302534 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A302534 Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Join@@primeMS/@primeMS[#]&]
%Y A302534 Cf. A000009, A000961, A001222, A003963, A005117, A007359, A007716, A051424, A056239, A275024, A279375, A281113, A289509, A294786, A301756, A302242, A302243, A302505, A302521.
%K A302534 nonn
%O A302534 1,2
%A A302534 _Gus Wiseman_, Apr 09 2018