cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302559 Partial sums of A092183.

This page as a plain text file.
%I A302559 #24 Aug 19 2018 09:31:24
%S A302559 1,601,5584,25052,78557,198233,431928,846336,1530129,2597089,4189240,
%T A302559 6479980,9677213,14026481,19814096,27370272,37072257,49347465,
%U A302559 64676608,83596828,106704829,134660009,168187592,208081760,255208785,310510161
%N A302559 Partial sums of A092183.
%C A302559 Geometrically, the partial sums of A092183 may be interpreted as 5-dimensional hecatonicosachoronal hyperpyramidal numbers. The hecatonicosachoron is a convex regular 4-D polytope with Schlaefli symbol {5,3,3}.
%H A302559 Colin Barker, <a href="/A302559/b302559.txt">Table of n, a(n) for n = 1..1000</a>
%H A302559 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A302559 a(n) = Sum_{k=1..n} A092183(k).
%F A302559 From _Colin Barker_, Aug 15 2018: (Start)
%F A302559 G.f.: x*(1 + 595*x + 1993*x^2 + 543*x^3) / (1 - x)^6.
%F A302559 a(n) = n*(584 - 105*n - 2120*n^2 + 135*n^3 + 1566*n^4)/60.
%F A302559 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End)
%o A302559 (PARI) Vec(x*(1 + 595*x + 1993*x^2 + 543*x^3) / (1 - x)^6 + O(x^40)) \\ _Colin Barker_, Aug 15 2018
%o A302559 (PARI) a(n) = (n*(584 - 105*n - 2120*n^2 + 135*n^3 + 1566*n^4)) / 60 \\ _Colin Barker_, Aug 15 2018
%Y A302559 Cf. A092183.
%K A302559 nonn,easy
%O A302559 1,2
%A A302559 _Alejandro J. Becerra Jr._, Aug 15 2018