A302560 Partial sums of icosahedral numbers (A006564).
1, 13, 61, 185, 440, 896, 1638, 2766, 4395, 6655, 9691, 13663, 18746, 25130, 33020, 42636, 54213, 68001, 84265, 103285, 125356, 150788, 179906, 213050, 250575, 292851, 340263, 393211, 452110, 517390, 589496, 668888, 756041, 851445, 955605, 1069041, 1192288, 1325896
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A006564.
Programs
-
PARI
Vec(x*(1 + 8*x + 6*x^2) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Aug 15 2018
-
PARI
a(n) = (n*(2 - 3*n + 10*n^2 + 15*n^3)) / 24 \\ Colin Barker, Aug 15 2018
Formula
a(n) = Sum_{k=1..n} A006564(k).
From Colin Barker, Aug 15 2018: (Start)
G.f.: x*(1 + 8*x + 6*x^2) / (1 - x)^5.
a(n) = n*(2 - 3*n + 10*n^2 + 15*n^3)/24.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments