This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302562 #16 Oct 30 2022 06:43:43 %S A302562 1,25,178,722,2147,5243,11172,21540,38469,64669,103510,159094,236327, %T A302562 340991,479816,660552,892041,1184289,1548538,1997338,2544619,3205763, %U A302562 3997676,4938860,6049485,7351461,8868510,10626238,12652207,14976007,17629328,20646032 %N A302562 Partial sums of A092181. %C A302562 Geometrically, the partial sums of A092181 may be interpreted as 5-dimensional icositetrachoronal hyperpyramidal numbers. The icositetrachoron is a convex regular 4-D polytope with Schlaefli symbol {3,4,3}. %H A302562 Colin Barker, <a href="/A302562/b302562.txt">Table of n, a(n) for n = 1..1000</a> %H A302562 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A302562 a(n) = Sum_{k=1..n} A092181(k). %F A302562 From _Colin Barker_, Aug 15 2018: (Start) %F A302562 G.f.: x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6. %F A302562 a(n) = n*(7 - 10*n^2 + 15*n^3 + 18*n^4) / 30. %F A302562 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. %F A302562 (End) %t A302562 Table[n*(7 - 10*n^2 + 15*n^3 + 18*n^4)/30, {n, 40}] (* _Wesley Ivan Hurt_, Oct 30 2022 *) %o A302562 (PARI) Vec(x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6 + O(x^40)) \\ _Colin Barker_, Aug 15 2018 %o A302562 (PARI) a(n) = (n*(7 - 10*n^2 + 15*n^3 + 18*n^4)) / 30 \\ _Colin Barker_, Aug 15 2018 %Y A302562 Cf. A092181. %K A302562 nonn,easy %O A302562 1,2 %A A302562 _Alejandro J. Becerra Jr._, Aug 15 2018