cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302562 Partial sums of A092181.

This page as a plain text file.
%I A302562 #16 Oct 30 2022 06:43:43
%S A302562 1,25,178,722,2147,5243,11172,21540,38469,64669,103510,159094,236327,
%T A302562 340991,479816,660552,892041,1184289,1548538,1997338,2544619,3205763,
%U A302562 3997676,4938860,6049485,7351461,8868510,10626238,12652207,14976007,17629328,20646032
%N A302562 Partial sums of A092181.
%C A302562 Geometrically, the partial sums of A092181 may be interpreted as 5-dimensional icositetrachoronal hyperpyramidal numbers.  The icositetrachoron is a convex regular 4-D polytope with Schlaefli symbol {3,4,3}.
%H A302562 Colin Barker, <a href="/A302562/b302562.txt">Table of n, a(n) for n = 1..1000</a>
%H A302562 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F A302562 a(n) = Sum_{k=1..n} A092181(k).
%F A302562 From _Colin Barker_, Aug 15 2018: (Start)
%F A302562 G.f.: x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6.
%F A302562 a(n) = n*(7 - 10*n^2 + 15*n^3 + 18*n^4) / 30.
%F A302562 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
%F A302562 (End)
%t A302562 Table[n*(7 - 10*n^2 + 15*n^3 + 18*n^4)/30, {n, 40}] (* _Wesley Ivan Hurt_, Oct 30 2022 *)
%o A302562 (PARI) Vec(x*(1 + 19*x + 43*x^2 + 9*x^3) / (1 - x)^6 + O(x^40)) \\ _Colin Barker_, Aug 15 2018
%o A302562 (PARI) a(n) = (n*(7 - 10*n^2 + 15*n^3 + 18*n^4)) / 30 \\ _Colin Barker_, Aug 15 2018
%Y A302562 Cf. A092181.
%K A302562 nonn,easy
%O A302562 1,2
%A A302562 _Alejandro J. Becerra Jr._, Aug 15 2018