This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302564 #16 Aug 16 2018 13:26:29 %S A302564 3,5,7,7,11,13,13,17,19,19,23,23,17,29,31,31,29,37,37,41,43,43,47,47, %T A302564 41,53,53,47,59,61,61,59,67,67,71,73,73,71,79,79,83,83,53,89,89,83,89, %U A302564 97,97,101,103,103,107,109,109,113,113,107,113,103,113,107,127,127,131,131,113,137,139,139 %N A302564 a(n) is the greatest prime p such that (2*n+1-p)/2 is prime. %C A302564 Lemoine's conjecture, also called Levy's conjecture, says a(n) exists for all n >= 3. %H A302564 Robert Israel, <a href="/A302564/b302564.txt">Table of n, a(n) for n = 3..10000</a> %H A302564 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lemoine%27s_conjecture">Lemoine's conjecture</a> %p A302564 Lemoine:= proc(x) local s; %p A302564 s:= x; %p A302564 while s > 3 do %p A302564 s:= prevprime(s); %p A302564 if isprime((x-s)/2) then return s fi %p A302564 od; %p A302564 end proc: %p A302564 seq(Lemoine(2*n+1),n=3..100); %o A302564 (PARI) a(n) = {my(p = precprime(2*n+1)); while (!isprime((2*n+1-p)/2), p = precprime(p-1)); p;} \\ _Michel Marcus_, Aug 16 2018 %Y A302564 Cf. A046927, A103506. %K A302564 nonn %O A302564 3,1 %A A302564 _Robert Israel_, Aug 15 2018