cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302568 Odd numbers that are either prime or whose prime indices are pairwise coprime.

This page as a plain text file.
%I A302568 #12 Nov 20 2020 17:14:46
%S A302568 3,5,7,11,13,15,17,19,23,29,31,33,35,37,41,43,47,51,53,55,59,61,67,69,
%T A302568 71,73,77,79,83,85,89,93,95,97,101,103,107,109,113,119,123,127,131,
%U A302568 137,139,141,143,145,149,151,155,157,161,163,165,167,173,177,179
%N A302568 Odd numbers that are either prime or whose prime indices are pairwise coprime.
%C A302568 Also Heinz numbers of partitions with pairwise coprime parts all greater than 1 (A007359), where singletons are considered coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
%F A302568 Equals A065091 \/ A337984.
%F A302568 Equals A302569 /\ A005408.
%e A302568 The sequence of terms together with their prime indices begins:
%e A302568       3: {2}       43: {14}      89: {24}      141: {2,15}
%e A302568       5: {3}       47: {15}      93: {2,11}    143: {5,6}
%e A302568       7: {4}       51: {2,7}     95: {3,8}     145: {3,10}
%e A302568      11: {5}       53: {16}      97: {25}      149: {35}
%e A302568      13: {6}       55: {3,5}    101: {26}      151: {36}
%e A302568      15: {2,3}     59: {17}     103: {27}      155: {3,11}
%e A302568      17: {7}       61: {18}     107: {28}      157: {37}
%e A302568      19: {8}       67: {19}     109: {29}      161: {4,9}
%e A302568      23: {9}       69: {2,9}    113: {30}      163: {38}
%e A302568      29: {10}      71: {20}     119: {4,7}     165: {2,3,5}
%e A302568      31: {11}      73: {21}     123: {2,13}    167: {39}
%e A302568      33: {2,5}     77: {4,5}    127: {31}      173: {40}
%e A302568      35: {3,4}     79: {22}     131: {32}      177: {2,17}
%e A302568      37: {12}      83: {23}     137: {33}      179: {41}
%e A302568      41: {13}      85: {3,7}    139: {34}      181: {42}
%e A302568 Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
%e A302568 03: {{1}}
%e A302568 05: {{2}}
%e A302568 07: {{1,1}}
%e A302568 11: {{3}}
%e A302568 13: {{1,2}}
%e A302568 15: {{1},{2}}
%e A302568 17: {{4}}
%e A302568 19: {{1,1,1}}
%e A302568 23: {{2,2}}
%e A302568 29: {{1,3}}
%e A302568 31: {{5}}
%e A302568 33: {{1},{3}}
%e A302568 35: {{2},{1,1}}
%e A302568 37: {{1,1,2}}
%e A302568 41: {{6}}
%e A302568 43: {{1,4}}
%e A302568 47: {{2,3}}
%e A302568 51: {{1},{4}}
%e A302568 53: {{1,1,1,1}}
%t A302568 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A302568 Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
%Y A302568 A005117 is a superset.
%Y A302568 A007359 counts partitions with these Heinz numbers.
%Y A302568 A302569 allows evens, with squarefree version A302798.
%Y A302568 A337694 is the pairwise non-coprime instead of pairwise coprime version.
%Y A302568 A337984 does not include the primes.
%Y A302568 A305713 counts pairwise coprime strict partitions.
%Y A302568 A327516 counts pairwise coprime partitions, ranked by A302696.
%Y A302568 A337462 counts pairwise coprime compositions, ranked by A333227.
%Y A302568 A337561 counts pairwise coprime strict compositions.
%Y A302568 A337667 counts pairwise non-coprime compositions, ranked by A337666.
%Y A302568 A337697 counts pairwise coprime compositions with no 1's.
%Y A302568 Cf. A005408, A051424, A056239, A087087, A112798, A200976, A302797, A303282, A304711, A335235, A338468.
%K A302568 nonn
%O A302568 1,1
%A A302568 _Gus Wiseman_, Apr 10 2018
%E A302568 Extended by _Gus Wiseman_, Oct 29 2020