This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302568 #12 Nov 20 2020 17:14:46 %S A302568 3,5,7,11,13,15,17,19,23,29,31,33,35,37,41,43,47,51,53,55,59,61,67,69, %T A302568 71,73,77,79,83,85,89,93,95,97,101,103,107,109,113,119,123,127,131, %U A302568 137,139,141,143,145,149,151,155,157,161,163,165,167,173,177,179 %N A302568 Odd numbers that are either prime or whose prime indices are pairwise coprime. %C A302568 Also Heinz numbers of partitions with pairwise coprime parts all greater than 1 (A007359), where singletons are considered coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %F A302568 Equals A065091 \/ A337984. %F A302568 Equals A302569 /\ A005408. %e A302568 The sequence of terms together with their prime indices begins: %e A302568 3: {2} 43: {14} 89: {24} 141: {2,15} %e A302568 5: {3} 47: {15} 93: {2,11} 143: {5,6} %e A302568 7: {4} 51: {2,7} 95: {3,8} 145: {3,10} %e A302568 11: {5} 53: {16} 97: {25} 149: {35} %e A302568 13: {6} 55: {3,5} 101: {26} 151: {36} %e A302568 15: {2,3} 59: {17} 103: {27} 155: {3,11} %e A302568 17: {7} 61: {18} 107: {28} 157: {37} %e A302568 19: {8} 67: {19} 109: {29} 161: {4,9} %e A302568 23: {9} 69: {2,9} 113: {30} 163: {38} %e A302568 29: {10} 71: {20} 119: {4,7} 165: {2,3,5} %e A302568 31: {11} 73: {21} 123: {2,13} 167: {39} %e A302568 33: {2,5} 77: {4,5} 127: {31} 173: {40} %e A302568 35: {3,4} 79: {22} 131: {32} 177: {2,17} %e A302568 37: {12} 83: {23} 137: {33} 179: {41} %e A302568 41: {13} 85: {3,7} 139: {34} 181: {42} %e A302568 Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems. %e A302568 03: {{1}} %e A302568 05: {{2}} %e A302568 07: {{1,1}} %e A302568 11: {{3}} %e A302568 13: {{1,2}} %e A302568 15: {{1},{2}} %e A302568 17: {{4}} %e A302568 19: {{1,1,1}} %e A302568 23: {{2,2}} %e A302568 29: {{1,3}} %e A302568 31: {{5}} %e A302568 33: {{1},{3}} %e A302568 35: {{2},{1,1}} %e A302568 37: {{1,1,2}} %e A302568 41: {{6}} %e A302568 43: {{1,4}} %e A302568 47: {{2,3}} %e A302568 51: {{1},{4}} %e A302568 53: {{1,1,1,1}} %t A302568 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A302568 Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&] %Y A302568 A005117 is a superset. %Y A302568 A007359 counts partitions with these Heinz numbers. %Y A302568 A302569 allows evens, with squarefree version A302798. %Y A302568 A337694 is the pairwise non-coprime instead of pairwise coprime version. %Y A302568 A337984 does not include the primes. %Y A302568 A305713 counts pairwise coprime strict partitions. %Y A302568 A327516 counts pairwise coprime partitions, ranked by A302696. %Y A302568 A337462 counts pairwise coprime compositions, ranked by A333227. %Y A302568 A337561 counts pairwise coprime strict compositions. %Y A302568 A337667 counts pairwise non-coprime compositions, ranked by A337666. %Y A302568 A337697 counts pairwise coprime compositions with no 1's. %Y A302568 Cf. A005408, A051424, A056239, A087087, A112798, A200976, A302797, A303282, A304711, A335235, A338468. %K A302568 nonn %O A302568 1,1 %A A302568 _Gus Wiseman_, Apr 10 2018 %E A302568 Extended by _Gus Wiseman_, Oct 29 2020