cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302569 Numbers that are either prime or whose prime indices are pairwise coprime. Heinz numbers of integer partitions with pairwise coprime parts.

This page as a plain text file.
%I A302569 #6 Nov 11 2021 15:32:08
%S A302569 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20,22,23,24,26,28,29,30,31,
%T A302569 32,33,34,35,37,38,40,41,43,44,46,47,48,51,52,53,55,56,58,59,60,61,62,
%U A302569 64,66,67,68,69,70,71,73,74,76,77,79,80,82,83,85,86,88,89
%N A302569 Numbers that are either prime or whose prime indices are pairwise coprime. Heinz numbers of integer partitions with pairwise coprime parts.
%C A302569 A prime index of n is a number m such that prime(m) divides n.
%C A302569 The Heinz number of an integer partition (y_1,..,y_k) is prime(y_1)*..*prime(y_k).
%H A302569 Charles R Greathouse IV, <a href="/A302569/b302569.txt">Table of n, a(n) for n = 1..10000</a>
%e A302569 Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
%e A302569 02: {{}}
%e A302569 03: {{1}}
%e A302569 04: {{},{}}
%e A302569 05: {{2}}
%e A302569 06: {{},{1}}
%e A302569 07: {{1,1}}
%e A302569 08: {{},{},{}}
%e A302569 10: {{},{2}}
%e A302569 11: {{3}}
%e A302569 12: {{},{},{1}}
%e A302569 13: {{1,2}}
%e A302569 14: {{},{1,1}}
%e A302569 15: {{1},{2}}
%e A302569 16: {{},{},{},{}}
%e A302569 17: {{4}}
%e A302569 19: {{1,1,1}}
%e A302569 20: {{},{},{2}}
%e A302569 22: {{},{3}}
%e A302569 23: {{2,2}}
%e A302569 24: {{},{},{},{1}}
%e A302569 26: {{},{1,2}}
%e A302569 28: {{},{},{1,1}}
%e A302569 29: {{1,3}}
%e A302569 30: {{},{1},{2}}
%e A302569 31: {{5}}
%e A302569 32: {{},{},{},{},{}}
%t A302569 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A302569 Select[Range[200],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
%o A302569 (PARI) is(n)=if(n<9, return(n>1)); n>>=valuation(n,2); if(n<9, return(1)); my(f=factor(n)); if(vecmax(f[,2])>1, return(0)); if(#f~==1, return(1)); my(v=apply(primepi, f[,1]),P=vecprod(v)); for(i=1,#v, if(gcd(v[i],P/v[i])>1, return(0))); 1 \\ _Charles R Greathouse IV_, Nov 11 2021
%Y A302569 Subsequence of A122132.
%Y A302569 Cf. A000961, A001222, A005117, A007359, A007716, A051424, A056239, A076610, A101268, A275024, A302505, A302568.
%K A302569 nonn
%O A302569 1,1
%A A302569 _Gus Wiseman_, Apr 10 2018