cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302571 Bi-unitary barely abundant numbers: bi-unitary abundant numbers k such that bsigma(k)/k < bsigma(m)/m for all bi-unitary abundant numbers m < k, where bsigma(k) is the sum of the bi-unitary divisors of k (A188999).

Original entry on oeis.org

24, 30, 40, 54, 56, 70, 80, 104, 642, 654, 678, 726, 762, 786, 822, 832, 1888, 1952, 4030, 5830, 7424, 32128, 62464, 374802, 374838, 374862, 374898, 374982, 375006, 375042, 375198, 375234, 375294, 375378, 375486, 375546, 375582, 375618, 375702, 375762, 375798
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2018

Keywords

Examples

			The values of bsigma(k)/k are: 3, 2.5, 2.4, 2.25, 2.222..., 2.142...
		

Crossrefs

The bi-unitary version of A071927.

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=  DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; r = 3; seq={}; Do[
    s = bsigma[n]/n; If[s > 2 && s < r, AppendTo[seq,n]; r = s], {n, 1, 10000}]; seq
  • PARI
    babindex(n) = {my(f = factor(n), p, e); prod(k = 1, #f~, p = f[k, 1]; e = f[k, 2]; (p^(e+1)-1)/(p^(e+1)-p^e) - if(e%2, 0, 1/p^(e/2)));}
    lista(kmax) = {my(bab, babm = 3); for(k = 1, kmax, bab = babindex(k); if(bab > 2 && bab < babm, babm = bab; print1(k, ", "))); }