cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302573 Primitive unitary abundant numbers (definition 1): unitary abundant numbers (A034683) all of whose proper unitary divisors are unitary deficient.

Original entry on oeis.org

70, 840, 924, 1092, 1386, 1428, 1430, 1596, 1638, 1870, 2002, 2090, 2142, 2210, 2394, 2470, 2530, 2970, 2990, 3190, 3230, 3410, 3510, 3770, 4030, 4070, 4510, 4730, 5170, 5390, 5830, 13860, 15015, 16380, 17160, 18480, 19635, 20020, 21420, 21840, 21945, 22440
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2018

Keywords

Comments

The unitary analog of A071395.
Prasad & Reddy proved that n is a primitive unitary abundant number if and only if 0 < usigma(n) - 2n < 2n/p^e, where p^e is the largest prime power that divides n.

Examples

			70 is primitive unitary abundant since it is unitary abundant (usigma(70) = 144 > 2*70), and all of its unitary divisors are unitary deficient. The smaller unitary abundant numbers, 30, 42, 66, are not primitive, since in each 6 is a unitary divisor, and 6 is not unitary deficient.
		

References

  • J. Sandor, D. S. Mitrinovic, and B. Crstici, Handbook of Number Theory, Vol. 1, Springer, 2006, p. 115.

Crossrefs

Programs

  • Mathematica
    maxPower[n_]:=Max[Power @@@ FactorInteger[n]];usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; d[n_]:=usigma[n]-2n; punQ[n_] := d[n]>0 && d[n]< 2n/maxPower[n]; Select[Range[1000], punQ]