A302573 Primitive unitary abundant numbers (definition 1): unitary abundant numbers (A034683) all of whose proper unitary divisors are unitary deficient.
70, 840, 924, 1092, 1386, 1428, 1430, 1596, 1638, 1870, 2002, 2090, 2142, 2210, 2394, 2470, 2530, 2970, 2990, 3190, 3230, 3410, 3510, 3770, 4030, 4070, 4510, 4730, 5170, 5390, 5830, 13860, 15015, 16380, 17160, 18480, 19635, 20020, 21420, 21840, 21945, 22440
Offset: 1
Keywords
Examples
70 is primitive unitary abundant since it is unitary abundant (usigma(70) = 144 > 2*70), and all of its unitary divisors are unitary deficient. The smaller unitary abundant numbers, 30, 42, 66, are not primitive, since in each 6 is a unitary divisor, and 6 is not unitary deficient.
References
- J. Sandor, D. S. Mitrinovic, and B. Crstici, Handbook of Number Theory, Vol. 1, Springer, 2006, p. 115.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- V. Siva Rama Prasad and D. Ram Reddy, On primitive unitary abundant numbers, Indian J. Pure Appl. Math., Vol. 21, No. 1 (1990) pp. 40-44.
Programs
-
Mathematica
maxPower[n_]:=Max[Power @@@ FactorInteger[n]];usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; d[n_]:=usigma[n]-2n; punQ[n_] := d[n]>0 && d[n]< 2n/maxPower[n]; Select[Range[1000], punQ]
Comments