cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302591 One, powers of 2, and prime numbers of squarefree index.

This page as a plain text file.
%I A302591 #9 Aug 27 2018 01:53:26
%S A302591 1,2,3,4,5,8,11,13,16,17,29,31,32,41,43,47,59,64,67,73,79,83,101,109,
%T A302591 113,127,128,137,139,149,157,163,167,179,181,191,199,211,233,241,256,
%U A302591 257,269,271,277,283,293,313,317,331,347,349,353,367,373,389,397,401
%N A302591 One, powers of 2, and prime numbers of squarefree index.
%C A302591 A prime index of n is a number m such that prime(m) divides n.
%H A302591 Andrew Howroyd, <a href="/A302591/b302591.txt">Table of n, a(n) for n = 1..1000</a>
%F A302591 Union of A000079 and A302491. - _Andrew Howroyd_, Aug 26 2018
%e A302591 Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
%e A302591 01: {}
%e A302591 02: {{}}
%e A302591 03: {{1}}
%e A302591 04: {{},{}}
%e A302591 05: {{2}}
%e A302591 08: {{},{},{}}
%e A302591 11: {{3}}
%e A302591 13: {{1,2}}
%e A302591 16: {{},{},{},{}}
%e A302591 17: {{4}}
%e A302591 29: {{1,3}}
%e A302591 31: {{5}}
%e A302591 32: {{},{},{},{},{}}
%e A302591 41: {{6}}
%e A302591 43: {{1,4}}
%e A302591 47: {{2,3}}
%e A302591 59: {{7}}
%e A302591 64: {{},{},{},{},{},{}}
%t A302591 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A302591 Select[Range[400],Or[#===1,Union[primeMS[#]]==={1},PrimeQ[#]&&SquareFreeQ[PrimePi[#]]]&]
%o A302591 (PARI) ok(n)={n>>valuation(n,2) == 1 || (isprime(n) && issquarefree(primepi(n)))} \\ _Andrew Howroyd_, Aug 26 2018
%Y A302591 Cf. A000079, A000961, A001222, A003963, A005117, A007716, A056239, A275024, A279791, A281113, A296133, A301765, A302242, A302243, A302491.
%K A302591 nonn
%O A302591 1,2
%A A302591 _Gus Wiseman_, Apr 10 2018