A302593 Numbers whose prime indices are powers of a common prime number.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 53, 54, 56, 57, 59, 62, 63, 64, 67, 68, 72, 76, 80, 81, 82, 83, 84, 88, 92, 96, 97, 98, 100, 103, 106, 108, 109, 112
Offset: 1
Keywords
Examples
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems. 01: {} 02: {{}} 03: {{1}} 04: {{},{}} 05: {{2}} 06: {{},{1}} 07: {{1,1}} 08: {{},{},{}} 09: {{1},{1}} 10: {{},{2}} 11: {{3}} 12: {{},{},{1}} 14: {{},{1,1}} 16: {{},{},{},{}} 17: {{4}} 18: {{},{1},{1}} 19: {{1,1,1}} 20: {{},{},{2}} 21: {{1},{1,1}} 22: {{},{3}} 23: {{2,2}} 24: {{},{},{},{1}} 25: {{2},{2}} 27: {{1},{1},{1}} 28: {{},{},{1,1}} 31: {{5}} 32: {{},{},{},{},{}} 34: {{},{4}} 36: {{},{},{1},{1}} 38: {{},{1,1,1}} 40: {{},{},{},{2}}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F,q; uses numtheory; F:= map(pi, factorset(n)); nops(`union`(op(map(factorset,F)))) <= 1 end proc: select(filter, [$1..200]); # Robert Israel, Oct 22 2020
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&]
Comments