A302632 Number of nX5 0..1 arrays with every element equal to 0, 1, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
8, 25, 25, 65, 257, 719, 2303, 7695, 24205, 77827, 251835, 806047, 2591353, 8340665, 26787773, 86104127, 276842555, 889744085, 2859889913, 9193087135, 29549125343, 94980382961, 305300890107, 981337384507, 3154346109841, 10139134067253
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0..0..1. .0..1..1..0..1. .0..1..1..0..0. .0..1..0..1..0 ..1..1..0..1..0. .1..0..1..0..0. .0..1..0..1..0. .0..0..0..1..0 ..0..1..0..1..0. .1..0..1..0..1. .1..1..1..1..1. .0..1..0..1..0 ..1..0..1..1..0. .1..0..1..0..1. .0..1..1..1..0. .0..1..0..1..0 ..1..0..0..0..0. .1..0..0..1..1. .0..1..0..1..0. .0..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302635.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +24*a(n-3) +2*a(n-4) +6*a(n-5) -175*a(n-6) -67*a(n-7) -79*a(n-8) +599*a(n-9) +219*a(n-10) +190*a(n-11) -1186*a(n-12) -174*a(n-13) -148*a(n-14) +1508*a(n-15) -244*a(n-16) +36*a(n-17) -1276*a(n-18) +616*a(n-19) +744*a(n-21) -640*a(n-22) +32*a(n-23) -272*a(n-24) +384*a(n-25) -64*a(n-26) +32*a(n-27) -128*a(n-28) +64*a(n-29) for n>32
Comments