This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302633 #11 Feb 08 2021 14:55:11 %S A302633 13,65,47,149,691,2262,8981,35772,135125,522265,2030558,7817366, %T A302633 30184397,116738915,450741840,1740832183,6725944705,25979920451, %U A302633 100351084472,387650634193,1497420252119,5784201010250,22343397443993,86308461484188 %N A302633 Number of nX6 0..1 arrays with every element equal to 0, 1, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302633 Column 6 of A302635. %H A302633 R. H. Hardin, <a href="/A302633/b302633.txt">Table of n, a(n) for n = 1..210</a> %F A302633 Empirical: a(n) = 4*a(n-2) +39*a(n-3) +50*a(n-4) -2*a(n-5) -393*a(n-6) -694*a(n-7) -455*a(n-8) +1693*a(n-9) +3775*a(n-10) +3444*a(n-11) -2775*a(n-12) -9804*a(n-13) -11520*a(n-14) -2477*a(n-15) +11606*a(n-16) +20666*a(n-17) +16150*a(n-18) -984*a(n-19) -19093*a(n-20) -24794*a(n-21) -14731*a(n-22) +3238*a(n-23) +15647*a(n-24) +18561*a(n-25) +12040*a(n-26) +2792*a(n-27) -5734*a(n-28) -9936*a(n-29) -10264*a(n-30) -7542*a(n-31) -2505*a(n-32) +3231*a(n-33) +6835*a(n-34) +6669*a(n-35) +3407*a(n-36) -82*a(n-37) -2685*a(n-38) -3140*a(n-39) -2156*a(n-40) -311*a(n-41) +848*a(n-42) +1060*a(n-43) +623*a(n-44) +130*a(n-45) -148*a(n-46) -209*a(n-47) -116*a(n-48) -18*a(n-49) +34*a(n-50) +24*a(n-51) +6*a(n-52) -2*a(n-53) -a(n-54) for n>65. %e A302633 Some solutions for n=5 %e A302633 ..0..1..0..1..0..1. .0..1..0..1..0..1. .0..1..1..0..0..1. .0..1..0..1..0..1 %e A302633 ..0..1..0..1..0..0. .0..1..0..1..0..0. .1..0..1..0..1..0. .0..0..0..1..0..1 %e A302633 ..0..1..1..1..0..1. .0..1..0..1..0..1. .1..0..1..0..1..0. .0..1..0..1..0..0 %e A302633 ..0..1..0..1..0..1. .0..1..0..1..1..1. .1..1..1..0..0..0. .0..1..0..1..0..1 %e A302633 ..0..1..0..1..0..1. .0..1..0..1..0..1. .1..0..1..0..1..0. .0..0..1..1..0..1 %Y A302633 Cf. A302635. %K A302633 nonn %O A302633 1,1 %A A302633 _R. H. Hardin_, Apr 10 2018