This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302635 #4 Apr 10 2018 19:32:21 %S A302635 1,2,2,3,3,4,5,9,6,8,8,17,8,10,16,13,25,14,19,21,32,21,65,25,33,42,42, %T A302635 64,34,185,47,65,101,82,86,128,55,385,83,149,257,248,189,179,256,89, %U A302635 649,150,304,691,719,657,469,370,512,144,1489,269,643,1734,2262,2303,1841,1029 %N A302635 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302635 Table starts %C A302635 ...1...2....3....5.....8.....13.....21......34.......55.......89.......144 %C A302635 ...2...3....9...17....25.....65....185.....385......649.....1489......3929 %C A302635 ...4...6....8...14....25.....47.....83.....150......269......488.......876 %C A302635 ...8..10...19...33....65....149....304.....643.....1343.....2880......6038 %C A302635 ..16..21...42..101...257....691...1734....4502....11524....30121.....77399 %C A302635 ..32..42...82..248...719...2262...6460...19799....59002...179668....535412 %C A302635 ..64..86..189..657..2303...8981..30216..112431...408512..1512824...5441957 %C A302635 .128.179..469.1841..7695..35772.144266..652931..2863575.12800635..55765517 %C A302635 .256.370.1029.4892.24205.135125.642553.3499587.18446157.98898783.515558643 %H A302635 R. H. Hardin, <a href="/A302635/b302635.txt">Table of n, a(n) for n = 1..391</a> %F A302635 Empirical for column k: %F A302635 k=1: a(n) = 2*a(n-1) %F A302635 k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5) %F A302635 k=3: a(n) = a(n-1) +9*a(n-3) -4*a(n-4) +2*a(n-5) -10*a(n-6) +4*a(n-7) +4*a(n-9) for n>13 %F A302635 k=4: [order 21] for n>25 %F A302635 k=5: [order 29] for n>32 %F A302635 k=6: [order 54] for n>65 %F A302635 Empirical for row n: %F A302635 n=1: a(n) = a(n-1) +a(n-2) %F A302635 n=2: a(n) = a(n-1) +16*a(n-4) -8*a(n-5) for n>6 %F A302635 n=3: a(n) = a(n-1) +a(n-2) +2*a(n-4) -a(n-5) for n>7 %F A302635 n=4: [order 22] for n>23 %F A302635 n=5: [order 63] for n>64 %F A302635 n=6: [order 81] for n>86 %e A302635 Some solutions for n=5 k=4 %e A302635 ..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..1. .0..1..0..1 %e A302635 ..1..1..1..0. .0..1..0..1. .0..1..0..0. .0..1..0..1. .0..0..0..1 %e A302635 ..0..0..0..0. .0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..1 %e A302635 ..0..1..1..1. .0..1..0..1. .0..0..1..0. .0..1..0..1. .0..1..0..1 %e A302635 ..0..1..0..0. .0..1..0..1. .1..1..1..0. .0..0..1..1. .0..1..1..0 %Y A302635 Column 1 is A000079(n-1). %Y A302635 Column 2 is A240513. %Y A302635 Row 1 is A000045(n+1). %Y A302635 Row 2 is A302164. %K A302635 nonn,tabl %O A302635 1,2 %A A302635 _R. H. Hardin_, Apr 10 2018