A302637 Number of 4 X n 0..1 arrays with every element equal to 0, 1, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
8, 10, 19, 33, 65, 149, 304, 643, 1343, 2880, 6038, 12805, 27015, 57283, 120917, 255898, 540904, 1144495, 2419416, 5117330, 10820901, 22886110, 48394996, 102347752, 216437366, 457724270, 967964774, 2047035882, 4328987213
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0..1..0. .0..1..0..0..1. .0..1..1..0..1. .0..0..1..1..0 ..0..1..0..1..1. .0..1..0..1..0. .1..0..1..0..0. .0..1..0..1..0 ..0..0..0..1..0. .0..1..0..1..0. .1..0..1..0..1. .0..1..0..1..0 ..0..1..0..1..0. .1..0..0..1..0. .1..0..1..0..1. .0..1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302635.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +2*a(n-3) +8*a(n-4) -6*a(n-5) -6*a(n-6) -13*a(n-7) -22*a(n-8) +7*a(n-9) +11*a(n-10) +28*a(n-11) +28*a(n-12) +2*a(n-13) -9*a(n-14) -27*a(n-15) -17*a(n-16) -2*a(n-17) +4*a(n-18) +10*a(n-19) +4*a(n-20) -2*a(n-21) -a(n-22) for n > 23.
Comments