cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302655 Number of minimal total dominating sets in the n-path graph.

This page as a plain text file.
%I A302655 #37 Jun 11 2025 19:46:09
%S A302655 0,1,2,1,2,4,3,4,8,9,10,16,21,25,36,49,60,81,112,144,189,256,336,441,
%T A302655 592,784,1029,1369,1820,2401,3182,4225,5586,7396,9815,12996,17200,
%U A302655 22801,30210,40000,53001,70225,93000,123201,163240,216225,286416,379456,502665
%N A302655 Number of minimal total dominating sets in the n-path graph.
%H A302655 Andrew Howroyd, <a href="/A302655/b302655.txt">Table of n, a(n) for n = 1..200</a>
%H A302655 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalTotalDominatingSet.html">Minimal Total Dominating Set</a>.
%H A302655 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PathGraph.html">Path Graph</a>.
%H A302655 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,1,1,0,-1,-1).
%F A302655 From _Andrew Howroyd_, Apr 15 2018: (Start)
%F A302655 a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) - a(n-8) - a(n-9) for n > 9.
%F A302655 G.f.: x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9).
%F A302655 a(2*n) = A000931(n+5)^2. (End)
%t A302655 Table[If[Mod[n, 2] == 0, (RootSum[-1 - # + #^3 &, #^(n/2 + 5) (5 - 6 # + 4 #^2) &]/23)^2, (RootSum[-1 + # - 2 #^2 + #^3 &, #^((n - 1)/2) (4 - 2 # + 5 #^2) &] + RootSum[-1 + #^2 + #^3 &, #^((n - 1)/2) (-5 + 6 # + 3 #^2) &])/23], {n, 50}]
%t A302655 LinearRecurrence[{0, 0, 1, 1, 1, 1, 0, -1, -1}, {0, 1, 2, 1, 2, 4, 3, 4, 8}, 50]
%t A302655 CoefficientList[Series[(x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - 2 x^6 - x^7))/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9), {x, 0, 50}], x]
%o A302655 (PARI) concat([0],Vec(x^2*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - 2*x^6 - x^7)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9) + O(x^50))) \\ _Andrew Howroyd_, Apr 15 2018
%Y A302655 Row 1 of A303118.
%Y A302655 Cf. A000931, A300738, A302654.
%K A302655 nonn,easy
%O A302655 1,3
%A A302655 _Eric W. Weisstein_, Apr 11 2018
%E A302655 Terms a(20) and beyond from _Andrew Howroyd_, Apr 15 2018