This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302660 #31 Sep 08 2022 08:46:21 %S A302660 4,6,10,14,3,7,15,10,8,11,5,8,6,10,9,11,14,8,11,9,4,16,5,17,14,3,7,15, %T A302660 10,8,8,6,9,13,14,8,11,4,12,5,17,2,3,7,15,10,5,10,9,13,11,14,8,9,12,5, %U A302660 17,2,14,3,7,8,8,6,10,9,8,11,12,16,5,17,14,7,10,8,11,8,6,13,14,8,9,4,16,5,17,14,3,7,15,11,8,6,13 %N A302660 a(n) = (prime(n) mod 9) + (prime(n) mod 10). %C A302660 The sum (prime(n) mod 9 + prime(n) mod 10) gives numbers between 2 and 17. %C A302660 For large n the distribution is displayed in the diagram below. %C A302660 . %C A302660 ^ %C A302660 | %C A302660 3y| .. . . . . . . . . .. o o %C A302660 | /:\ /:\ %C A302660 | / : \ / : \ %C A302660 2y| .. . . . . . o / : o--o : \ o %C A302660 | /:\ / : : : : \ /:\ %C A302660 | / | \ / : | | : \ / | \ %C A302660 y| .. o--o--o : o--o : : : : o--o : o--o--o %C A302660 | /. . . | . . : | | : . . | . . .\ %C A302660 | / . . . : . . : : : : . . : . . . \ %C A302660 |__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__o__\ %C A302660 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 / %C A302660 . %C A302660 If y is the quantity for {2, 3, 4, 6, 7, 12, 13, 15, 16, 17} (same) %C A302660 then 2y is the quantity of {5, 9, 10, 14} (same) and %C A302660 3y is the quantity for {8, 11} (same). %C A302660 Example: For primes less than 10^10, the distribution of frequencies of a(n) from 2 to 17 is {18960677, 18960726, 18960712, 37920181, 18959991, 18960427, 56880630, 37923467, 37921201, 56882003, 18960991, 18960869, 37920879, 18960270, 18959802, 18959685}. %H A302660 Robert Israel, <a href="/A302660/b302660.txt">Table of n, a(n) for n = 1..10000</a> %F A302660 a(n) = A038194(n) + A007652(n). %e A302660 For n=7, prime(7) = 17, 17 mod 9 = 8 and 17 mod 10 = 7. So a(7) = 8 + 7 = 15. %p A302660 map(t -> (t mod 9)+(t mod 10), [seq(ithprime(i),i=1..100)]); # _Robert Israel_, Jun 10 2018 %t A302660 Array[Mod[#, 9] + Mod[#, 10] &@ Prime@ # &, 95] (* _Michael De Vlieger_, Apr 21 2018 *) %o A302660 (PARI) {forprime(n = 2, 1000, s = n%9 + n%10; print1(s", "))} %o A302660 (Magma) [(NthPrime(n) mod 9) + (NthPrime(n) mod 10): n in [1..100]]; // _Vincenzo Librandi_, Jun 10 2018 %Y A302660 Cf. A007652, A038194. %K A302660 nonn,easy %O A302660 1,1 %A A302660 _Dimitris Valianatos_, Apr 11 2018