This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302670 #4 Apr 11 2018 11:59:56 %S A302670 0,1,0,1,3,0,2,14,11,0,3,45,43,34,0,5,146,164,194,111,0,8,537,760,934, %T A302670 691,361,0,13,1934,3425,6110,4267,2802,1172,0,21,6861,15569,38736, %U A302670 42367,21949,10660,3809,0,34,24386,70323,251254,352174,316977,106793,41839 %N A302670 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302670 Table starts %C A302670 .0.....1......1.......2.........3..........5............8............13 %C A302670 .0.....3.....14......45.......146........537.........1934..........6861 %C A302670 .0....11.....43.....164.......760.......3425........15569.........70323 %C A302670 .0....34....194.....934......6110......38736.......251254.......1610569 %C A302670 .0...111....691....4267.....42367.....352174......3204956......28324200 %C A302670 .0...361...2802...21949....316977....3640304.....46360666.....582115385 %C A302670 .0..1172..10660..106793...2320879...35549458....637088915...11181864782 %C A302670 .0..3809..41839..529984..17037458..353912413...8880747825..219692176894 %C A302670 .0.12377.161878.2617548.125456575.3503182605.123521424862.4291098950499 %H A302670 R. H. Hardin, <a href="/A302670/b302670.txt">Table of n, a(n) for n = 1..180</a> %F A302670 Empirical for column k: %F A302670 k=1: a(n) = a(n-1) %F A302670 k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) %F A302670 k=3: [order 14] %F A302670 k=4: [order 32] for n>35 %F A302670 Empirical for row n: %F A302670 n=1: a(n) = a(n-1) +a(n-2) %F A302670 n=2: a(n) = 2*a(n-1) +3*a(n-2) +6*a(n-3) +10*a(n-4) +4*a(n-5) for n>6 %F A302670 n=3: [order 15] for n>17 %F A302670 n=4: [order 54] for n>58 %e A302670 Some solutions for n=5 k=4 %e A302670 ..0..0..1..1. .0..0..1..1. .0..1..1..0. .0..1..1..1. .0..1..1..0 %e A302670 ..1..1..0..1. .0..1..0..0. .1..0..0..1. .0..0..1..1. .1..0..0..1 %e A302670 ..1..1..0..1. .1..0..1..1. .1..1..0..0. .1..0..0..0. .1..0..0..1 %e A302670 ..0..0..1..0. .0..0..1..0. .0..1..0..1. .0..1..1..1. .1..1..1..1 %e A302670 ..0..0..1..1. .1..1..0..1. .1..0..1..1. .1..0..0..1. .0..0..0..0 %Y A302670 Column 2 is A180762. %Y A302670 Row 1 is A000045(n-1). %Y A302670 Row 2 is A302225. %Y A302670 Row 3 is A302226. %Y A302670 Row 4 is A302227. %K A302670 nonn,tabl %O A302670 1,5 %A A302670 _R. H. Hardin_, Apr 11 2018