cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302680 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 3, 4, 8, 8, 5, 8, 6, 16, 13, 7, 12, 7, 9, 32, 21, 13, 18, 20, 11, 14, 64, 34, 23, 40, 30, 33, 18, 22, 128, 55, 37, 94, 76, 63, 64, 29, 35, 256, 89, 63, 184, 217, 187, 125, 121, 47, 56, 512, 144, 109, 358, 509, 661, 453, 257, 231, 76, 90, 1024, 233, 183, 760
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2018

Keywords

Comments

Table starts
...1..2..3...5....8...13....21.....34......55.......89......144.......233
...2..3..3...5....7...13....23.....37......63......109......183.......309
...4..4..8..12...18...40....94....184.....358......760.....1594......3220
...8..6..7..20...30...76...217....509....1189.....3034.....7569.....18274
..16..9.11..33...63..187...661...1837....5075....15661....46975....135191
..32.14.18..64..125..453..2013...6725...21745....80985...295335...1015113
..64.22.29.121..257.1125..6311..25139...96728...439233..1942666...8017639
.128.35.47.231..528.2782.19497..92889..422915..2330640.12480973..61679118
.256.56.76.440.1085.6843.60253.343421.1847358.12346637.80210343.474618407

Examples

			Some solutions for n=5 k=4
..0..1..1..1. .0..1..0..1. .0..0..0..1. .0..1..1..1. .0..0..0..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..0..1..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .1..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..0..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n+1).
Row 2 is A003229(n-1) for n>2.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = a(n-1) +a(n-2) for n>5
k=4: a(n) = a(n-1) +2*a(n-2) -a(n-4) for n>8
k=5: a(n) = a(n-1) +3*a(n-3) +2*a(n-4) +2*a(n-5) for n>10
k=6: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) +a(n-4) -2*a(n-5) -a(n-6) for n>12
k=7: [order 12] for n>19
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +2*a(n-3) for n>5
n=3: a(n) = a(n-1) +3*a(n-3) +3*a(n-4) for n>7
n=4: a(n) = a(n-1) +a(n-2) +5*a(n-3) +5*a(n-4) -3*a(n-5) -3*a(n-6) +2*a(n-7) for n>11
n=5: [order 11] for n>16
n=6: [order 17] for n>23
n=7: [order 31] for n>38