cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302696 Numbers whose prime indices (with repetition) are pairwise coprime. Nonprime Heinz numbers of integer partitions with pairwise coprime parts.

This page as a plain text file.
%I A302696 #27 Dec 07 2021 11:09:06
%S A302696 1,2,4,6,8,10,12,14,15,16,20,22,24,26,28,30,32,33,34,35,38,40,44,46,
%T A302696 48,51,52,55,56,58,60,62,64,66,68,69,70,74,76,77,80,82,85,86,88,92,93,
%U A302696 94,95,96,102,104,106,110,112,116,118,119,120,122,123,124,128,132
%N A302696 Numbers whose prime indices (with repetition) are pairwise coprime. Nonprime Heinz numbers of integer partitions with pairwise coprime parts.
%C A302696 A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
%C A302696 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A302696 Number 36 = prime(1)*prime(1)*prime(2)*prime(2) is not included in the sequence, because the pair of prime indices {2,2} is not coprime. - _Gus Wiseman_, Dec 06 2021
%H A302696 Robert Israel, <a href="/A302696/b302696.txt">Table of n, a(n) for n = 1..10000</a>
%H A302696 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%e A302696 Sequence of integer partitions with pairwise coprime parts begins: (), (1), (11), (21), (111), (31), (211), (41), (32), (1111), (311), (51), (2111), (61), (411), (321).
%e A302696 Missing from this list are: (2), (3), (4), (22), (5), (6), (7), (221), (8), (42), (9), (33), (222).
%p A302696 filter:= proc(n) local F;
%p A302696    F:= ifactors(n)[2];
%p A302696    if nops(F)=1 then if F[1][1] = 2 then return true else return false fi fi;
%p A302696    if ormap(t -> t[2]>1 and t[1] <> 2, F) then return false fi;
%p A302696    F:= map(t -> numtheory:-pi(t[1]), F);
%p A302696    ilcm(op(F))=convert(F,`*`)
%p A302696 end proc:
%p A302696 select(filter, [$1..200]); # _Robert Israel_, Sep 10 2020
%t A302696 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A302696 Select[Range[200],Or[#===1,CoprimeQ@@primeMS[#]]&]
%o A302696 (PARI) isA302696(n) = if(isprimepower(n),!(n%2), if(!issquarefree(n>>valuation(n,2)), 0, my(pis=apply(primepi,factor(n)[,1])); (lcm(pis)==factorback(pis)))); \\ _Antti Karttunen_, Dec 06 2021
%Y A302696 Cf. A000837, A000961, A001222, A005117, A007359, A051424, A275024, A289508, A289509, A298748, A302568, A302569, A302697, A302698, A327512, A327513.
%K A302696 nonn
%O A302696 1,2
%A A302696 _Gus Wiseman_, Apr 11 2018
%E A302696 Clarification (with repetition) added to the definition by _Antti Karttunen_, Dec 06 2021