This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302698 #28 May 10 2021 07:40:34 %S A302698 0,0,0,0,1,0,3,2,5,4,13,7,23,18,32,33,65,50,104,92,148,153,252,226, %T A302698 376,376,544,570,846,821,1237,1276,1736,1869,2552,2643,3659,3887,5067, %U A302698 5509,7244,7672,10086,10909,13756,15168,19195,20735,26237,28708,35418,39207 %N A302698 Number of integer partitions of n into relatively prime parts that are all greater than 1. %C A302698 Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1 (which is impossible in this case). %C A302698 The Heinz numbers of these partitions are given by A302697. %H A302698 Alois P. Heinz, <a href="/A302698/b302698.txt">Table of n, a(n) for n = 1..1000</a> %F A302698 a(n) = A002865(n) - A018783(n). %e A302698 The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot): %e A302698 (32) . (43) (53) (54) (73) (65) (75) %e A302698 (52) (332) (72) (433) (74) (543) %e A302698 (322) (432) (532) (83) (552) %e A302698 (522) (3322) (92) (732) %e A302698 (3222) (443) (4332) %e A302698 (533) (5322) %e A302698 (542) (33222) %e A302698 (632) %e A302698 (722) %e A302698 (3332) %e A302698 (4322) %e A302698 (5222) %e A302698 (32222) %p A302698 b:= proc(n, i, g) option remember; `if`(n=0, `if`(g=1, 1, 0), %p A302698 `if`(i<2, 0, b(n, i-1, g)+b(n-i, min(n-i, i), igcd(g, i)))) %p A302698 end: %p A302698 a:= n-> b(n$2, 0): %p A302698 seq(a(n), n=1..60); # _Alois P. Heinz_, Apr 12 2018 %t A302698 Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&GCD@@#===1&]],{n,30}] %t A302698 (* Second program: *) %t A302698 b[n_, i_, g_] := b[n, i, g] = If[n == 0, If[g == 1, 1, 0], If[i < 2, 0, b[n, i - 1, g] + b[n - i, Min[n - i, i], GCD[g, i]]]]; %t A302698 a[n_] := b[n, n, 0]; %t A302698 Array[a, 60] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A302698 A000837 is the version allowing 1's. %Y A302698 A002865 does not require relative primality. %Y A302698 A302697 gives the Heinz numbers of these partitions. %Y A302698 A337450 is the ordered version. %Y A302698 A337451 is the ordered strict version. %Y A302698 A337452 is the strict version. %Y A302698 A337485 is the pairwise coprime instead of relatively prime version. %Y A302698 A000740 counts relatively prime compositions. %Y A302698 A078374 counts relatively prime strict partitions. %Y A302698 A212804 counts compositions with no 1's. %Y A302698 A291166 appears to rank relatively prime compositions. %Y A302698 A332004 counts strict relatively prime compositions. %Y A302698 A337561 counts pairwise coprime strict compositions. %Y A302698 A338332 is the case of length 3, with strict case A338333. %Y A302698 Cf. A007359, A018783, A051424, A101268, A289508, A289509, A302568, A337563, A337984, A338468. %K A302698 nonn %O A302698 1,7 %A A302698 _Gus Wiseman_, Apr 11 2018 %E A302698 Extended by _Gus Wiseman_, Oct 29 2020