A302708 Constant of a logarithmic spiral interpolating the centers of regular hexagons: (-6/Pi)*log(-1 + sqrt(3)).
5, 9, 5, 6, 9, 5, 3, 5, 4, 3, 7, 8, 9, 9, 3, 4, 1, 9, 8, 7, 8, 9, 6, 6, 1, 3, 3, 7, 7, 5, 3, 6, 0, 1, 7, 3, 7, 1, 2, 3, 1, 3, 1, 5, 4, 5, 8, 2, 8, 8, 7, 2, 6, 6, 8, 6, 6, 7, 6, 6, 0, 7, 5, 0, 3, 2, 9, 2, 5, 3, 3, 4, 8, 7, 0, 8, 3, 0, 2, 9, 0, 5, 7, 8, 5, 2, 4, 7, 9, 8, 3, 7, 4, 7, 9, 2, 4, 0, 8, 6, 5, 9, 5
Offset: 0
Examples
0.59569535437899341987896613377536017371231315458288726686676607503292533487083...
Links
- Wolfdieter Lang, On a Conformal Mapping of Regular Hexagons and the Spiral of its Centers.
Crossrefs
Cf. A160390.
Programs
-
Mathematica
RealDigits[6*Log[Sqrt[3] - 1]/Pi, 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
-
PARI
default(realprecision,120); -(6/Pi)*log(-1 + sqrt(3)) \\ Georg Fischer, Jul 18 2021
Formula
Equals -(6/Pi)*log(-1 + sqrt(3)) = -(6/Pi)*log(A160390).
Extensions
a(102) corrected by Georg Fischer, Jul 18 2021
Comments