A302737 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
8, 128, 1637, 21625, 286631, 3798398, 50347423, 667361051, 8845980434, 117255120887, 1554238778426, 20601729761966, 273079838843598, 3619725111303264, 47980143627858744, 635985913868386593
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..1. .0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..1..0 ..0..0..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..0. .1..0..1..1 ..1..0..0..1. .1..1..1..1. .1..1..0..1. .0..1..1..1. .0..0..1..1 ..0..1..1..0. .1..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1 ..1..0..1..0. .0..0..1..1. .1..0..1..0. .1..1..1..0. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302741.
Formula
Empirical: a(n) = 12*a(n-1) +20*a(n-2) -18*a(n-3) -326*a(n-4) -375*a(n-5) +241*a(n-6) +1721*a(n-7) +1034*a(n-8) -798*a(n-9) -966*a(n-10) +86*a(n-11) +278*a(n-12) -242*a(n-13) -348*a(n-14) -112*a(n-15)
Comments