cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A302736 Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 228, 1652, 11980, 86916, 630604, 4575332, 33196332, 240856196, 1747533964, 12679246500, 91994373868, 667465912772, 4842804251724, 35137004861924, 254936818941100, 1849696122577668, 13420484966010892, 97372435679847716
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Column 3 of A302741.

Examples

			Some solutions for n=5
..0..0..1. .0..0..0. .0..1..0. .0..0..0. .0..1..0. .0..0..1. .0..1..0
..0..0..0. .0..1..0. .0..1..1. .0..0..1. .1..1..0. .1..1..1. .1..0..0
..1..0..1. .1..1..0. .0..1..0. .0..1..1. .0..0..0. .0..1..1. .1..1..0
..1..0..0. .0..1..0. .1..1..0. .1..0..1. .1..0..1. .0..1..1. .0..1..0
..1..0..0. .1..0..1. .1..0..1. .0..0..0. .1..0..0. .0..0..0. .0..1..1
		

Crossrefs

Cf. A302741.

Formula

Empirical: a(n) = 7*a(n-1) +2*a(n-2) +2*a(n-3) -20*a(n-4) -16*a(n-5)

A302737 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1637, 21625, 286631, 3798398, 50347423, 667361051, 8845980434, 117255120887, 1554238778426, 20601729761966, 273079838843598, 3619725111303264, 47980143627858744, 635985913868386593
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Column 4 of A302741.

Examples

			Some solutions for n=5
..0..0..0..1. .0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..1..0
..0..0..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..0. .1..0..1..1
..1..0..0..1. .1..1..1..1. .1..1..0..1. .0..1..1..1. .0..0..1..1
..0..1..1..0. .1..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1
..1..0..1..0. .0..0..1..1. .1..0..1..0. .1..1..1..0. .0..0..1..0
		

Crossrefs

Cf. A302741.

Formula

Empirical: a(n) = 12*a(n-1) +20*a(n-2) -18*a(n-3) -326*a(n-4) -375*a(n-5) +241*a(n-6) +1721*a(n-7) +1034*a(n-8) -798*a(n-9) -966*a(n-10) +86*a(n-11) +278*a(n-12) -242*a(n-13) -348*a(n-14) -112*a(n-15)

A302738 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 11814, 285613, 6947036, 168833401, 4104946296, 99807877377, 2426739457531, 59004229082101, 1434640787398200, 34882150655708793, 848131798093298119, 20621651341736039102, 501399081664691938244
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Column 5 of A302741.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..1..0. .0..1..0..1..0. .0..0..0..1..0. .0..0..0..1..1
..0..0..1..0..1. .0..1..1..0..1. .1..0..1..1..1. .1..0..1..1..1
..1..1..0..0..0. .1..0..1..0..0. .1..0..0..1..0. .0..1..0..0..0
..1..1..0..0..1. .0..0..0..1..0. .1..1..1..0..0. .1..0..0..1..1
		

Crossrefs

Cf. A302741.

Formula

Empirical: a(n) = 22*a(n-1) +83*a(n-2) -348*a(n-3) -7035*a(n-4) -12847*a(n-5) +101126*a(n-6) +715314*a(n-7) +551768*a(n-8) -7976480*a(n-9) -28155124*a(n-10) +2223552*a(n-11) +225326378*a(n-12) +398991738*a(n-13) -381402071*a(n-14) -1855238986*a(n-15) -1195015793*a(n-16) +2403141606*a(n-17) +3529071043*a(n-18) -880293737*a(n-19) -3044285462*a(n-20) +3274803791*a(n-21) +8578409618*a(n-22) +33030614*a(n-23) -15141436247*a(n-24) -15534577096*a(n-25) +3742098782*a(n-26) +20424779659*a(n-27) +13937583556*a(n-28) -7123915776*a(n-29) -17656823459*a(n-30) -8146649764*a(n-31) +6692884054*a(n-32) +10427831751*a(n-33) +4098906129*a(n-34) -1206533270*a(n-35) -1528012560*a(n-36) -444188050*a(n-37) -263602856*a(n-38) -358593728*a(n-39) -242520692*a(n-40) -110328384*a(n-41) -49499632*a(n-42) -16170992*a(n-43) -4119712*a(n-44) -592880*a(n-45) -34752*a(n-46)

A302739 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 85268, 3778433, 168799572, 7530280825, 336148647504, 15005851329729, 669868217032865, 29903422831135923, 1334911181586033610, 59591443914944392698, 2660207213782069872253, 118753666013501679372163
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Column 6 of A302741.

Examples

			Some solutions for n=5
..0..0..0..0..0..0. .0..0..1..1..0..0. .0..0..0..1..1..0. .0..0..0..1..1..0
..0..0..1..1..1..1. .0..0..0..1..1..0. .0..0..1..1..0..1. .0..0..1..0..1..1
..0..0..1..1..0..1. .0..0..1..0..0..0. .0..0..1..1..0..1. .0..0..1..0..0..1
..0..0..0..1..0..1. .0..0..1..1..0..1. .0..0..1..1..0..0. .0..0..1..1..0..1
..0..0..1..1..0..1. .0..0..0..1..1..0. .0..0..1..1..1..0. .0..0..1..1..1..0
		

Crossrefs

Cf. A302741.

A302740 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 615589, 50012515, 4104115772, 336126343424, 27552364197684, 2258515399666414, 185133937573802146, 15175842668215691966, 1243997339324531820830, 101973231441890685645169
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Column 7 of A302741.

Examples

			Some solutions for n=5
..0..0..1..0..1..0..1. .0..0..1..0..0..1..1. .0..0..1..1..0..0..1
..0..0..1..1..0..1..1. .0..0..1..1..1..0..0. .0..0..1..1..0..0..1
..0..0..0..0..1..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..1
..0..0..1..1..0..1..1. .0..0..1..1..1..0..1. .0..0..1..1..1..1..0
..0..1..1..1..0..0..1. .0..0..1..0..0..0..1. .0..0..1..0..0..0..1
		

Crossrefs

Cf. A302741.

A302742 Number of 3Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 228, 1637, 11814, 85268, 615589, 4444226, 32085336, 231641898, 1672352613, 12073650477, 87166448968, 629303444781, 4543294244531, 32800587324576, 236805822155030, 1709633941974433, 12342805548255732, 89109630466361141
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Row 3 of A302741.

Examples

			Some solutions for n=5
..0..0..1..0..1. .0..0..1..1..0. .0..1..0..1..0. .0..1..0..0..1
..1..1..0..1..1. .1..0..0..1..0. .1..0..0..0..1. .0..1..0..1..0
..0..1..1..0..0. .0..1..1..0..1. .1..1..0..0..1. .1..1..1..0..1
		

Crossrefs

Cf. A302741.

Formula

Empirical: a(n) = 7*a(n-1) +4*a(n-2) -17*a(n-3) -3*a(n-4) -9*a(n-6) +14*a(n-7) for n>8

A302743 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1652, 21625, 285613, 3778433, 50012515, 662080634, 8765152857, 116041489300, 1536272725817, 20338725884827, 269264599669170, 3564797029819794, 47194388320663969, 624807045634867762
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Row 4 of A302741.

Examples

			Some solutions for n=5
..0..0..1..0..1. .0..0..1..1..1. .0..1..1..0..1. .0..1..1..0..1
..0..1..1..0..1. .0..1..0..0..0. .0..1..0..0..0. .0..0..0..1..1
..0..0..0..1..0. .1..1..1..0..1. .0..0..1..1..1. .0..1..1..1..0
..0..1..1..1..1. .0..1..1..1..1. .1..0..0..0..0. .1..1..0..0..1
		

Crossrefs

Cf. A302741.

Formula

Empirical: a(n) = 13*a(n-1) +16*a(n-2) -165*a(n-3) -70*a(n-4) +100*a(n-5) -564*a(n-6) +879*a(n-7) -500*a(n-8) +1128*a(n-9) +1340*a(n-10) -448*a(n-11) -182*a(n-12) -314*a(n-13) +12*a(n-14) +2*a(n-15) for n>16

A302744 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 11980, 286631, 6947036, 168799572, 4104115772, 99818649293, 2427829113648, 59052536397220, 1436349489188322, 34936780127006555, 849778519255324644, 20669440240076116148, 502749555285048546206
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Row 5 of A302741.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..1. .0..0..0..1..1. .0..0..1..0..1. .0..0..1..1..1
..0..1..1..1..1. .1..0..1..1..1. .1..0..1..0..1. .1..0..1..0..0
..0..1..0..1..0. .0..1..0..1..0. .1..0..0..0..0. .0..1..0..1..1
..1..0..1..0..0. .1..0..0..1..1. .1..1..1..1..0. .1..0..1..0..0
		

Crossrefs

Cf. A302741.

Formula

Empirical recurrence of order 64 (see link above)

A302745 Number of 6 X n 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 86916, 3798398, 168833401, 7530280825, 336126343424, 15010834679441, 670378626187959, 29940446700420704, 1337202711481279800, 59722547584253923663, 2667347131443330301159, 119129941729951306756928
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Row 6 of A302741.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..1..0. .0..0..0..0..1. .0..0..0..1..0
..1..1..1..1..1. .1..1..1..0..0. .1..1..1..1..0. .1..0..1..1..0
..0..0..1..1..0. .1..0..1..0..0. .1..0..1..1..1. .1..1..0..1..0
..1..0..1..1..0. .1..0..0..1..0. .1..0..0..0..0. .1..1..0..1..0
..1..0..0..0..0. .1..0..1..1..0. .1..1..1..0..0. .1..1..1..0..0
		

Crossrefs

Cf. A302741.

A302746 Number of 7Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 630604, 50347423, 4104946296, 336148647504, 27552364197684, 2259775666820199, 185346624306819175, 15203212791707362697, 1247058011926331112543, 102291835163573811251710
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2018

Keywords

Comments

Row 7 of A302741.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..1..1..1..1..1. .1..1..1..1..1. .1..1..1..1..1. .1..1..1..1..1
..0..0..0..1..1. .0..0..0..1..1. .0..0..0..1..0. .0..0..0..0..1
..1..0..1..0..0. .0..1..0..1..1. .1..1..0..1..1. .1..0..0..1..0
..0..0..1..0..0. .0..1..0..0..1. .0..0..1..0..1. .0..1..1..0..0
..0..1..0..1..0. .1..1..1..1..1. .0..0..0..0..1. .1..1..0..1..1
		

Crossrefs

Cf. A302741.
Showing 1-10 of 11 results. Next