This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302747 #51 Sep 01 2018 10:17:06 %S A302747 1,-2,4,3,-8,-12,16,36,9,-32,-96,-54,64,240,216,27,-128,-576,-720, %T A302747 -216,256,1344,2160,1080,81,-512,-3072,-6048,-4320,-810,1024,6912, %U A302747 16128,15120,4860,243,-2048,-15360,-41472,-48384,-22680,-2916,4096,33792,103680,145152,90720,20412,729,-8192,-73728,-253440 %N A302747 Triangle read by rows: T(0,0) = 1; T(n,k) = -2*T(n-1,k) + 3*T(n-2,k-1) for 0 <= k <= floor(n/2); T(n,k)=0 for n or k < 0. %C A302747 The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle in A303901 ((3-2x)^n). %C A302747 The coefficients in the expansion of 1/(1-3x+2x^2) are given by the sequence generated by the row sums. %D A302747 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 394-396. %H A302747 Zagros Lalo, <a href="/A302747/a302747.pdf">Left-justified triangle</a> %e A302747 Triangle begins: %e A302747 . %e A302747 n | k = 0 1 2 3 4 5 6 %e A302747 ---+----------------------------------------------------- %e A302747 0 | 1 %e A302747 1 | -2 %e A302747 2 | 4 3 %e A302747 3 | -8 -12 %e A302747 4 | 16 36 9 %e A302747 5 | -32 -96 -54 %e A302747 6 | 64 240 216 27 %e A302747 7 | -128 -576 -720 -216 %e A302747 8 | 256 1344 2160 1080 81 %e A302747 9 | -512 -3072 -6048 -4320 -810 %e A302747 10 | 1024 6912 16128 15120 4860 243 %e A302747 11 | -2048 -15360 -41472 -48384 -22680 -2916 %e A302747 12 | 4096 33792 103680 145152 90720 20412 729 %e A302747 13 | -8192 -73728 -253440 -414720 -326592 -108864 -10206 %t A302747 t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, -2 t[n - 1, k] + 3 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten %o A302747 (PARI) T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -2*T(n-1,k) + 3*T(n-2,k-1))); %o A302747 tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 10 2018 %Y A302747 Row sums give A014983. %Y A302747 Cf. A303901, A303941. %K A302747 tabf,easy,sign %O A302747 0,2 %A A302747 _Zagros Lalo_, May 04 2018