A302754 Maximum remainder of prime(p) + prime(q) divided by p + q with p <= q <= n.
0, 2, 4, 6, 6, 6, 6, 6, 10, 18, 18, 22, 22, 24, 24, 24, 24, 24, 24, 24, 24, 26, 28, 34, 44, 46, 46, 46, 46, 46, 57, 58, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 70, 74, 78, 82, 82, 82, 82, 82, 90, 110, 110, 110, 110, 126, 130, 136, 138, 138, 142, 142, 142, 142
Offset: 1
Examples
a(1) = 0 because only option is p = q = 1. a(4) = a(8) = 6 because (prime(4) + prime(4)) mod 8 = (prime(8) + prime(7)) mod 15 = 6 is the largest remainder for both. a(31) = 57 because (prime(28) + prime(31)) mod 59 = 57 is the largest remainder.
Links
- Altug Alkan, Table of n, a(n) for n = 1..10000
- Andres Cicuttin, Several plots showing similar stair-like patterns
Programs
-
Mathematica
a[n_]:=Table[Table[Mod[Prime[j]+Prime[i],i+j],{i,1,j}],{j,1,n}]//Flatten//Max; Table[a[n],{n,1,100}]
-
PARI
a(n) = vecmax(vector(n, q, vecmax(vector(q, p, (prime(p)+prime(q)) % (p+q)))));
Comments