This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302762 #22 Jun 18 2025 06:10:40 %S A302762 1,5,14,44,112,238,449,782,1287,2030,3096,4592,6650,9430,13123,17954, %T A302762 24185,32118,42098,54516,69812,88478,111061,138166,170459,208670, %U A302762 253596,306104,367134,437702,518903,611914,717997,838502,974870,1128636,1301432,1494990,1711145 %N A302762 Number of minimal total dominating sets in the n-Andrásfai graph. %H A302762 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AndrasfaiGraph.html">Andrásfai Graph</a> %H A302762 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a> %H A302762 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A302762 a(n) = (-720 + 2732*n - 1880*n^2 + 505*n^3 - 40*n^4 + 3*n^5)/120 for n > 2. %F A302762 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 8. %F A302762 G.f.: x*(1 - x - x^2 + 15*x^3 - 27*x^4 + 15*x^5 + 2*x^6 - x^7)/(-1 + x)^6. %t A302762 Join[{1, 5}, Table[(-720 + 2732 n - 1880 n^2 + 505 n^3 - 40 n^4 + 3 n^5)/120, {n, 3, 20}]] %t A302762 LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 5, 14, 44, 112, 238, 449, 782}, 20] %t A302762 CoefficientList[Series[(1 - x - x^2 + 15 x^3 - 27 x^4 + 15 x^5 + 2 x^6 - x^7)/(-1 + x)^6, {x, 0, 20}], x] %Y A302762 Cf. A213661, A290270, A302603. %K A302762 nonn,easy %O A302762 1,2 %A A302762 _Eric W. Weisstein_, Apr 12 2018 %E A302762 a(8)-a(20) from _Andrew Howroyd_, Apr 15 2018