cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302796 Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.

This page as a plain text file.
%I A302796 #7 Apr 13 2018 21:54:39
%S A302796 1,2,6,10,14,15,22,26,30,33,34,35,38,42,46,51,55,58,62,66,69,70,74,77,
%T A302796 78,82,85,86,93,94,95,102,105,106,110,114,118,119,122,123,130,134,138,
%U A302796 141,142,143,145,146,154,155,158,161,165,166,170,174,177,178,182
%N A302796 Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.
%C A302796 A prime index of n is a number m such that prime(m) divides n. Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1.
%C A302796 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A302796 Sequence of terms together with their sets of prime indices begins:
%e A302796 01 : {}
%e A302796 02 : {1}
%e A302796 06 : {1,2}
%e A302796 10 : {1,3}
%e A302796 14 : {1,4}
%e A302796 15 : {2,3}
%e A302796 22 : {1,5}
%e A302796 26 : {1,6}
%e A302796 30 : {1,2,3}
%e A302796 33 : {2,5}
%e A302796 34 : {1,7}
%e A302796 35 : {3,4}
%e A302796 38 : {1,8}
%e A302796 42 : {1,2,4}
%e A302796 46 : {1,9}
%e A302796 51 : {2,7}
%e A302796 55 : {3,5}
%e A302796 58 : {1,10}
%e A302796 62 : {1,11}
%e A302796 66 : {1,2,5}
%t A302796 Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&]
%o A302796 (PARI) isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ _Michel Marcus_, Apr 13 2018
%Y A302796 Cf. A001222, A003963, A005117, A007359, A051424, A056239, A275024, A289509, A302242, A302505, A302696, A302697, A302698, A302797, A302798.
%K A302796 nonn
%O A302796 1,2
%A A302796 _Gus Wiseman_, Apr 13 2018