This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302796 #7 Apr 13 2018 21:54:39 %S A302796 1,2,6,10,14,15,22,26,30,33,34,35,38,42,46,51,55,58,62,66,69,70,74,77, %T A302796 78,82,85,86,93,94,95,102,105,106,110,114,118,119,122,123,130,134,138, %U A302796 141,142,143,145,146,154,155,158,161,165,166,170,174,177,178,182 %N A302796 Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts. %C A302796 A prime index of n is a number m such that prime(m) divides n. Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1. %C A302796 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A302796 Sequence of terms together with their sets of prime indices begins: %e A302796 01 : {} %e A302796 02 : {1} %e A302796 06 : {1,2} %e A302796 10 : {1,3} %e A302796 14 : {1,4} %e A302796 15 : {2,3} %e A302796 22 : {1,5} %e A302796 26 : {1,6} %e A302796 30 : {1,2,3} %e A302796 33 : {2,5} %e A302796 34 : {1,7} %e A302796 35 : {3,4} %e A302796 38 : {1,8} %e A302796 42 : {1,2,4} %e A302796 46 : {1,9} %e A302796 51 : {2,7} %e A302796 55 : {3,5} %e A302796 58 : {1,10} %e A302796 62 : {1,11} %e A302796 66 : {1,2,5} %t A302796 Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&] %o A302796 (PARI) isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ _Michel Marcus_, Apr 13 2018 %Y A302796 Cf. A001222, A003963, A005117, A007359, A051424, A056239, A275024, A289509, A302242, A302505, A302696, A302697, A302698, A302797, A302798. %K A302796 nonn %O A302796 1,2 %A A302796 _Gus Wiseman_, Apr 13 2018