cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302797 Squarefree numbers whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions with pairwise coprime parts.

This page as a plain text file.
%I A302797 #5 Apr 13 2018 21:54:46
%S A302797 1,2,6,10,14,15,22,26,30,33,34,35,38,46,51,55,58,62,66,69,70,74,77,82,
%T A302797 85,86,93,94,95,102,106,110,118,119,122,123,134,138,141,142,143,145,
%U A302797 146,154,155,158,161,165,166,170,177,178,186,187,190,194,201,202
%N A302797 Squarefree numbers whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions with pairwise coprime parts.
%C A302797 A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
%C A302797 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A302797 Sequence of terms together with their sets of prime indices begins:
%e A302797 01 : {}
%e A302797 02 : {1}
%e A302797 06 : {1,2}
%e A302797 10 : {1,3}
%e A302797 14 : {1,4}
%e A302797 15 : {2,3}
%e A302797 22 : {1,5}
%e A302797 26 : {1,6}
%e A302797 30 : {1,2,3}
%e A302797 33 : {2,5}
%e A302797 34 : {1,7}
%e A302797 35 : {3,4}
%e A302797 38 : {1,8}
%e A302797 46 : {1,9}
%e A302797 51 : {2,7}
%e A302797 55 : {3,5}
%e A302797 58 : {1,10}
%e A302797 62 : {1,11}
%e A302797 66 : {1,2,5}
%e A302797 69 : {2,9}
%e A302797 70 : {1,3,4}
%t A302797 Select[Range[100],Or[#===1,SquareFreeQ[#]&&CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]]&]
%Y A302797 Cf. A001222, A003963, A005117, A007359, A051424, A056239, A275024, A289509, A302242, A302505, A302696, A302697, A302698, A302796, A302798.
%K A302797 nonn
%O A302797 1,2
%A A302797 _Gus Wiseman_, Apr 13 2018