cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302798 Squarefree numbers that are prime or whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions that either consist of a single part or have pairwise coprime parts.

This page as a plain text file.
%I A302798 #5 Apr 13 2018 21:54:54
%S A302798 1,2,3,5,6,7,10,11,13,14,15,17,19,22,23,26,29,30,31,33,34,35,37,38,41,
%T A302798 43,46,47,51,53,55,58,59,61,62,66,67,69,70,71,73,74,77,79,82,83,85,86,
%U A302798 89,93,94,95,97,101,102,103,106,107,109,110,113,118,119,122
%N A302798 Squarefree numbers that are prime or whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions that either consist of a single part or have pairwise coprime parts.
%C A302798 A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
%C A302798 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A302798 Sequence of terms together with their sets of prime indices begins:
%e A302798 01 : {}
%e A302798 02 : {1}
%e A302798 03 : {2}
%e A302798 05 : {3}
%e A302798 06 : {1,2}
%e A302798 07 : {4}
%e A302798 10 : {1,3}
%e A302798 11 : {5}
%e A302798 13 : {6}
%e A302798 14 : {1,4}
%e A302798 15 : {2,3}
%e A302798 17 : {7}
%e A302798 19 : {8}
%e A302798 22 : {1,5}
%e A302798 23 : {9}
%e A302798 26 : {1,6}
%e A302798 29 : {10}
%e A302798 30 : {1,2,3}
%t A302798 Select[Range[100],Or[#===1,SquareFreeQ[#]&&(PrimeQ[#]||CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]])]&]
%Y A302798 Cf. A001222, A003963, A005117, A007359, A051424, A056239, A275024, A289509, A294472, A302242, A302505, A302696, A302697, A302698, A302796, A302797.
%K A302798 nonn
%O A302798 1,2
%A A302798 _Gus Wiseman_, Apr 13 2018