This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302798 #5 Apr 13 2018 21:54:54 %S A302798 1,2,3,5,6,7,10,11,13,14,15,17,19,22,23,26,29,30,31,33,34,35,37,38,41, %T A302798 43,46,47,51,53,55,58,59,61,62,66,67,69,70,71,73,74,77,79,82,83,85,86, %U A302798 89,93,94,95,97,101,102,103,106,107,109,110,113,118,119,122 %N A302798 Squarefree numbers that are prime or whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions that either consist of a single part or have pairwise coprime parts. %C A302798 A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1. %C A302798 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A302798 Sequence of terms together with their sets of prime indices begins: %e A302798 01 : {} %e A302798 02 : {1} %e A302798 03 : {2} %e A302798 05 : {3} %e A302798 06 : {1,2} %e A302798 07 : {4} %e A302798 10 : {1,3} %e A302798 11 : {5} %e A302798 13 : {6} %e A302798 14 : {1,4} %e A302798 15 : {2,3} %e A302798 17 : {7} %e A302798 19 : {8} %e A302798 22 : {1,5} %e A302798 23 : {9} %e A302798 26 : {1,6} %e A302798 29 : {10} %e A302798 30 : {1,2,3} %t A302798 Select[Range[100],Or[#===1,SquareFreeQ[#]&&(PrimeQ[#]||CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]])]&] %Y A302798 Cf. A001222, A003963, A005117, A007359, A051424, A056239, A275024, A289509, A294472, A302242, A302505, A302696, A302697, A302698, A302796, A302797. %K A302798 nonn %O A302798 1,2 %A A302798 _Gus Wiseman_, Apr 13 2018