A302804 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
8, 105, 934, 8718, 82367, 773520, 7267160, 68346451, 642498696, 6040048126, 56785892353, 533860095036, 5018978504768, 47185161079295, 443603218392484, 4170460416343998, 39207890434190925, 368606418000678668
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..1..0. .0..1..1..1. .0..1..0..0. .0..0..1..1. .0..1..1..0 ..1..0..1..1. .0..0..1..0. .0..1..1..0. .1..0..1..1. .0..1..0..1 ..1..0..1..1. .1..0..0..0. .0..0..1..1. .1..0..0..1. .1..0..1..0 ..0..1..1..0. .1..0..0..1. .1..1..0..0. .0..1..1..0. .1..0..0..1 ..0..0..0..1. .1..0..0..0. .0..1..1..1. .1..1..0..0. .1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302808.
Formula
Empirical: a(n) = 10*a(n-1) +a(n-2) +25*a(n-3) -853*a(n-4) -99*a(n-5) +2046*a(n-6) +16917*a(n-7) -2302*a(n-8) -31502*a(n-9) -89718*a(n-10) +14428*a(n-11) +54836*a(n-12) -37484*a(n-13) +150384*a(n-14) -43524*a(n-15) +14472*a(n-16) -33696*a(n-17) +5832*a(n-18) for n>20
Comments