cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302810 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A302810 #4 Apr 13 2018 13:10:42
%S A302810 8,128,1010,8718,74072,632004,5396562,46048956,393010948,3354229130,
%T A302810 28626729216,244317217799,2085144343545,17795817110568,
%U A302810 151879748363323,1296229146049548,11062765094422311,94416001329770771,805800467376475810
%N A302810 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A302810 Row 4 of A302808.
%H A302810 R. H. Hardin, <a href="/A302810/b302810.txt">Table of n, a(n) for n = 1..210</a>
%F A302810 Empirical: a(n) = 5*a(n-1) +44*a(n-2) -54*a(n-3) -583*a(n-4) -134*a(n-5) +3745*a(n-6) +2342*a(n-7) -19086*a(n-8) +5167*a(n-9) +100950*a(n-10) -95590*a(n-11) -330420*a(n-12) +300448*a(n-13) +120445*a(n-14) -580497*a(n-15) +1847741*a(n-16) +1018090*a(n-17) -2871691*a(n-18) +1232729*a(n-19) +625362*a(n-20) -3517102*a(n-21) -369126*a(n-22) -7215641*a(n-23) -3856188*a(n-24) +18527258*a(n-25) +6990579*a(n-26) -24990486*a(n-27) -20336354*a(n-28) +6888853*a(n-29) +27407575*a(n-30) +46764683*a(n-31) +36690912*a(n-32) -29995623*a(n-33) -69788022*a(n-34) -21863393*a(n-35) +29321349*a(n-36) +23774779*a(n-37) +604618*a(n-38) -5816484*a(n-39) -2546547*a(n-40) -146625*a(n-41) +258463*a(n-42) +164010*a(n-43) +39355*a(n-44) -1983*a(n-45) -922*a(n-46) -480*a(n-47) -54*a(n-48) for n>50
%e A302810 Some solutions for n=5
%e A302810 ..0..1..0..0..1. .0..0..0..1..1. .0..0..0..0..1. .0..0..0..1..0
%e A302810 ..0..0..1..1..0. .1..1..0..1..1. .1..1..1..1..0. .0..1..1..1..0
%e A302810 ..1..1..1..0..0. .1..1..0..0..1. .0..0..1..0..0. .0..1..0..1..1
%e A302810 ..1..0..1..0..1. .0..1..0..1..1. .1..1..0..0..1. .0..0..1..1..0
%Y A302810 Cf. A302808.
%K A302810 nonn
%O A302810 1,1
%A A302810 _R. H. Hardin_, Apr 13 2018