cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302832 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^k)^k.

This page as a plain text file.
%I A302832 #10 Apr 14 2018 14:49:14
%S A302832 1,2,4,9,17,33,61,110,193,335,570,955,1582,2586,4185,6706,10646,16757,
%T A302832 26178,40587,62503,95637,145445,219929,330766,494898,736858,1092027,
%U A302832 1611185,2367079,3463490,5048009,7329935,10605211,15290942,21973641,31475620,44946859,63991639,90842560
%N A302832 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^k)^k.
%C A302832 Partial sums of A026007.
%H A302832 Alois P. Heinz, <a href="/A302832/b302832.txt">Table of n, a(n) for n = 0..10000</a>
%H A302832 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A302832 G.f.: (1/(1 - x))*exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)).
%F A302832 From _Vaclav Kotesovec_, Apr 13 2018: (Start)
%F A302832 a(n) ~ exp((3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(5/12) * 3^(2/3) * sqrt(Pi) * Zeta(3)^(1/6) * n^(1/3)).
%F A302832 a(n) ~ (2*n/(3*Zeta(3)))^(1/3) * A026007(n).
%F A302832 a(n) ~ erfi((3/2)^(2/3) * Zeta(3)^(1/6) * n^(1/3)) / 2^(13/12).
%F A302832 (End)
%p A302832 b:= proc(n) option remember;
%p A302832       add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n))
%p A302832     end:
%p A302832 g:= proc(n) option remember;
%p A302832       `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n)
%p A302832     end:
%p A302832 a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+g(n)) end:
%p A302832 seq(a(n), n=0..40);  # _Alois P. Heinz_, Apr 13 2018
%t A302832 nmax = 39; CoefficientList[Series[1/(1 - x) Product[(1 + x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
%t A302832 nmax = 39; CoefficientList[1/(1 - x) Series[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]
%Y A302832 Cf. A000009, A026007, A036469, A091360, A302831.
%K A302832 nonn
%O A302832 0,2
%A A302832 _Ilya Gutkovskiy_, Apr 13 2018