A302872 Number of nX3 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
3, 11, 17, 37, 82, 209, 536, 1549, 4513, 13980, 44424, 142457, 463592, 1518144, 4985864, 16423493, 54170895, 178797985, 590488247, 1950654770, 6444889749, 21296082916, 70373480203, 232558689443, 768538881502, 2539828012418
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1. .0..0..1. .0..0..1. .0..0..1. .0..1..0. .0..0..1. .0..0..0 ..0..1..0. .1..1..1. .0..1..0. .1..1..1. .0..1..0. .1..1..1. .0..1..0 ..0..1..0. .1..0..1. .0..1..0. .1..0..1. .0..1..0. .1..0..1. .0..1..0 ..0..1..0. .1..0..0. .1..1..0. .1..0..1. .0..0..0. .1..0..1. .0..1..0 ..0..0..0. .1..0..1. .0..1..0. .0..1..1. .0..1..1. .1..1..0. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302877.
Formula
Empirical: a(n) = 3*a(n-1) +9*a(n-3) -15*a(n-4) -5*a(n-5) -22*a(n-6) -7*a(n-7) +9*a(n-8) -32*a(n-9) -10*a(n-10) -16*a(n-11) -40*a(n-12) -16*a(n-13) for n>16
Comments