cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302873 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A302873 #4 Apr 15 2018 10:31:36
%S A302873 5,21,35,95,285,858,2938,11126,44216,186565,819633,3681703,16781413,
%T A302873 77160382,356502109,1651886591,7666887125,35617442101,165553926866,
%U A302873 769750431744,3579614404889,16648148072359,77431993155630
%N A302873 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A302873 Column 4 of A302877.
%H A302873 R. H. Hardin, <a href="/A302873/b302873.txt">Table of n, a(n) for n = 1..210</a>
%F A302873 Empirical: a(n) = 5*a(n-1) -a(n-2) +9*a(n-3) -38*a(n-4) -64*a(n-5) -94*a(n-6) -28*a(n-7) +298*a(n-8) +645*a(n-9) +892*a(n-10) +2073*a(n-11) +2812*a(n-12) +1062*a(n-13) -6119*a(n-14) -14380*a(n-15) -15795*a(n-16) -13646*a(n-17) -10955*a(n-18) -6874*a(n-19) +13030*a(n-20) +34925*a(n-21) +45526*a(n-22) +34585*a(n-23) +42419*a(n-24) +53978*a(n-25) +38220*a(n-26) -24564*a(n-27) -75371*a(n-28) -85828*a(n-29) -61780*a(n-30) -29630*a(n-31) -7671*a(n-32) +10349*a(n-33) +15109*a(n-34) +19873*a(n-35) +15144*a(n-36) +11837*a(n-37) +4645*a(n-38) +3040*a(n-39) +2158*a(n-40) +65*a(n-41) -120*a(n-42) -1013*a(n-43) +241*a(n-44) -225*a(n-45) +495*a(n-46) +126*a(n-47) +306*a(n-48) +42*a(n-49) +54*a(n-50) +8*a(n-51) -34*a(n-52) -6*a(n-53) -18*a(n-54) -2*a(n-55) -2*a(n-56) for n>59
%e A302873 Some solutions for n=5
%e A302873 ..0..1..0..0. .0..0..1..0. .0..1..0..1. .0..0..0..1. .0..1..0..1
%e A302873 ..0..1..1..1. .1..1..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1
%e A302873 ..0..1..0..1. .1..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..1
%e A302873 ..0..1..0..1. .1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..1
%e A302873 ..0..1..1..0. .0..1..1..0. .1..0..1..0. .1..0..0..1. .0..1..0..0
%Y A302873 Cf. A302877.
%K A302873 nonn
%O A302873 1,1
%A A302873 _R. H. Hardin_, Apr 15 2018