cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302879 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A302879 #4 Apr 15 2018 10:35:47
%S A302879 8,10,37,95,306,1442,5871,21832,89400,411068,1770984,7282331,31250009,
%T A302879 139497681,604440671,2568314200,11116864094,48801680753,211521061837,
%U A302879 909708854837,3943937945239,17186537187421,74492402195670
%N A302879 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C A302879 Row 4 of A302877.
%H A302879 R. H. Hardin, <a href="/A302879/b302879.txt">Table of n, a(n) for n = 1..210</a>
%F A302879 Empirical: a(n) = 2*a(n-1) +9*a(n-2) -a(n-3) +197*a(n-4) -369*a(n-5) -1849*a(n-6) +1185*a(n-7) -9297*a(n-8) +17419*a(n-9) +96934*a(n-10) -64121*a(n-11) +189735*a(n-12) -397855*a(n-13) -2179494*a(n-14) +1449982*a(n-15) -1953412*a(n-16) +5213325*a(n-17) +23546498*a(n-18) -17130545*a(n-19) +9687329*a(n-20) -39431609*a(n-21) -113301551*a(n-22) +101095763*a(n-23) -13652305*a(n-24) +144037950*a(n-25) +111473727*a(n-26) -192684002*a(n-27) -14180716*a(n-28) -92338753*a(n-29) +637491359*a(n-30) -458644178*a(n-31) -178181636*a(n-32) -418135324*a(n-33) -1125465677*a(n-34) +1681486374*a(n-35) +337584642*a(n-36) +257262389*a(n-37) +888728487*a(n-38) -1462999026*a(n-39) -506296467*a(n-40) +450179489*a(n-41) -448543244*a(n-42) -12981540*a(n-43) +230189402*a(n-44) +47001636*a(n-45) +246935888*a(n-46) +107738769*a(n-47) -70677303*a(n-48) -59948120*a(n-49) -23694726*a(n-50) -7999498*a(n-51) -4816966*a(n-52) -48148*a(n-53) +922529*a(n-54) +217690*a(n-55) +49426*a(n-56) -28880*a(n-57) -18874*a(n-58) -2384*a(n-59) -32*a(n-60) for n>64
%e A302879 Some solutions for n=5
%e A302879 ..0..1..0..0..1. .0..1..1..0..1. .0..1..0..0..1. .0..1..1..1..0
%e A302879 ..0..0..0..0..0. .1..0..1..0..1. .0..0..0..0..0. .0..0..0..1..0
%e A302879 ..1..1..1..0..1. .1..0..1..0..1. .1..1..0..0..1. .1..1..1..1..1
%e A302879 ..1..0..0..0..1. .1..0..1..1..0. .1..0..1..0..1. .0..0..1..1..0
%Y A302879 Cf. A302877.
%K A302879 nonn
%O A302879 1,1
%A A302879 _R. H. Hardin_, Apr 15 2018