This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302907 #20 Feb 04 2019 07:39:05 %S A302907 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4,8,10,2,4,4,2,4, %T A302907 2,8,2,8,4,10,4,14,16,14,10,8,1,1,5,7,1,5,5,7,1,7,1,11,5,13,11,13,10, %U A302907 2,4,8,2,4,2,4,4,2,2,8,2,10,4,8,5,13,11,1 %N A302907 For any number m with decimal digits (d_1, ..., d_k), let s(m) be the area of the convex hull of the set of points { (i, d_i), i = 1..k }; a(n) = 2 * s(prime(n)) (where prime(n) denotes the n-th prime number). %C A302907 As in A167847 and in similar sequences, we map the digits of a number to a set of points and consider its graphical and geometrical properties. %H A302907 Rémy Sigrist, <a href="/A302907/a302907.png">Illustration of a(10000)</a> (using Pick's theorem) %H A302907 Rémy Sigrist, <a href="/A302907/a302907.gp.txt">PARI program for A302907</a> %F A302907 a(n) = 0 iff the n-th prime number belongs to A167847. %e A302907 For n = 26: %e A302907 - the 26th prime number is 101, %e A302907 - the corresponding convex hull is as follows: %e A302907 (1,1) +-----+ (3,1) %e A302907 \ / %e A302907 \ / %e A302907 + (2,0) %e A302907 - it has area 1, hence a(26) = 2. %o A302907 (PARI) See Links section. %Y A302907 Cf. A000040, A167847. %K A302907 nonn,base %O A302907 1,26 %A A302907 _Rémy Sigrist_, Dec 16 2018