A302919 The number of ways of placing 2n-1 white balls and 2n-1 black balls into unlabeled bins such that each bin has both an odd number of white balls and black balls.
1, 2, 4, 12, 32, 85, 217, 539, 1316, 3146, 7374, 16969, 38387, 85452, 187456, 405659, 866759, 1830086, 3821072, 7894447, 16148593, 32723147, 65719405, 130871128, 258513076, 506724988, 985968770, 1904992841, 3655873294, 6970687150, 13208622956, 24879427889, 46593011280, 86773920240, 160742462714, 296227087942, 543183754454, 991213989213
Offset: 1
Keywords
Examples
For n = 3 the a(3) = 4 ways to place five white and five black balls are (wwwwwbbbbb), (wwwbbb)(wb)(wb), (wwwb)(wbbb)(wb), and (wb)(wb)(wb)(wb)(wb).
Links
- Marko Riedel, How many ways to get an odd number of each color in each bin?, Mathematics Stack Exchange.
Programs
-
Mathematica
nmax = 15; p = 1; Do[Do[p = Expand[p*(1 - x^(2*i - 1)*y^(2*j - 1))]; p = Select[p, (Exponent[#, x] <= 2*nmax - 1) && (Exponent[#, y] <= 2*nmax - 1) &], {i, 1, 2*nmax - 1}], {j, 1, nmax}]; p = Expand[Normal[Series[1/p, {x, 0, 2*nmax - 1}, {y, 0, 2*nmax - 1}]]]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^(2*n - 1)*y^(2*n - 1)], {n, 1, nmax}]}] (* Vaclav Kotesovec, Apr 16 2018 *)
Extensions
More terms from Vaclav Kotesovec, Apr 16 2018