A302920 Number of ways to write prime(n)^2 as x^2 + 2*y^2 + 3*2^z with x,y,z nonnegative integers.
1, 2, 3, 3, 4, 5, 4, 4, 3, 7, 6, 7, 6, 7, 8, 8, 7, 7, 6, 5, 7, 6, 8, 6, 8, 7, 9, 9, 7, 6, 6, 9, 7, 5, 8, 5, 9, 9, 10, 10, 9, 14, 7, 5, 11, 8, 8, 11, 10, 10, 12, 10, 6, 12, 11, 10, 8, 9, 10, 11, 8, 7, 15, 5, 11, 8, 14, 10, 7, 10
Offset: 1
Keywords
Examples
a(1) = 1 with prime(1)^2 = 4 = 1^2 + 2*0^2 + 3*2^0. a(2) = 2 with prime(2)^2 = 9 = 2^2 + 2*1^2 + 3*2^0 = 1^2 + 2*1^2 + 3*2^1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..6000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
p[n_]:=p[n]=Prime[n]; SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; f[n_]:=f[n]=FactorInteger[n]; g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n],i],1],8]==5||Mod[Part[Part[f[n],i],1],8]==7)&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0; QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]); tab={};Do[r=0;Do[If[QQ[p[n]^2-3*2^k],Do[If[SQ[p[n]^2-3*2^k-2x^2],r=r+1],{x,0,Sqrt[(p[n]^2-3*2^k)/2]}]],{k,0,Log[2,p[n]^2/3]}];tab=Append[tab,r],{n,1,70}];Print[tab]
Comments