A302923 Raw half-moments of a Fibonacci-geometric probability distribution.
3, 29, 411, 7757, 183003, 5180909, 171119931, 6459325517, 274300290843, 12942639522989, 671756887456251, 38035572830424077, 2333081451314129883, 154118411443366428269, 10907930704590567517371, 823491157770358707135437, 66054810199299268861908123
Offset: 1
Keywords
Examples
a(1)=3 is half the first raw moment of the distribution. It is half the arithmetic average of integers following the distribution. a(2)=29 is half the second raw moment. It is half the arithmetic average of the squares of integers following the distribution.
Links
- Albert Gordon Smith, Table of n, a(n) for n = 1..300
- Christopher Genovese, Double Heads
Crossrefs
Programs
-
Mathematica
Module[{max, r, g, rawMoments}, max = 17; r = Range[0, max]; g[x_] := x^2/(4 - 2 x - x^2); rawMoments = r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x]; Rest[rawMoments]/2 ]
Formula
In the following,
F(k) is the k-th Fibonacci number, as defined in the Comments.
phi=(1+sqrt(5))/2 is the golden ratio, and psi=(1-sqrt(5))/2.
Li(s,z) is the polylogarithm of order s and argument z.
When s is a negative integer as it is here, Li(s,z) is a rational function of z: Li(-n,z) = (z(d/dz))^n(z/(1-z)).
For n>=1:
a(n) = (1/2)A302922(n);
a(n) = (1/2)Sum_{k>=1} ((k^n)(F(k-1)/2^k));
a(n) = (1/2)Sum_{k>=1} ((k^n)(((phi^(k-1)-psi^(k-1))/sqrt(5))/2^k));
a(n) = (1/2)(Li(-n,phi/2)/phi-Li(-n,psi/2)/psi)/sqrt(5).
E.g.f.: (1/2)g(e^x) where g(x) = x^2/(4-2x-x^2) is the g.f. for the probability distribution.
Comments