A302925 Central half-moments of a Fibonacci-geometric probability distribution.
0, 11, 105, 2213, 51165, 1453181, 47976285, 1811069453, 76908075405, 3628847679101, 188346690807165, 10664385332157293, 654147624218952045, 43211604394985309021, 3058357414665518833245, 230889832039240121542733, 18520398049681432308011085
Offset: 1
Keywords
Examples
a(1)=0 is half the 1st central moment of the distribution, or half the "mean about the mean". It is zero by definition of central moments. a(2)=11 is half the 2nd central moment, or half the variance, or half the square of the standard deviation.
Links
- Albert Gordon Smith, Table of n, a(n) for n = 1..300
- Christopher Genovese, Double Heads
Crossrefs
Programs
-
Mathematica
Module[{max, r, g, moments, centralMoments}, max = 17; r = Range[0, max]; g[x_] := x^2/(4 - 2 x - x^2); moments = r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x]; centralMoments = Table[Sum[Binomial[n, k] moments[[k + 1]] (-6)^(n - k), {k, 0, n}], {n, 0, max}]; Rest[centralMoments]/2 ]
Formula
In the following,
F(k) is the k-th Fibonacci number, as defined in the Comments.
phi=(1+sqrt(5))/2 is the golden ratio, and psi=(1-sqrt(5))/2.
LerchPhi(z,s,a) = Sum_{k>=0} z^k/(a+k)^s is the Lerch transcendant.
For n>=1:
a(n) = (1/2)A302924(n);
a(n) = (1/2)Sum_{k>=1} (((k-6)^n)(F(k-1)/2^k));
a(n) = (1/2)Sum_{k>=1} (((k-6)^n)(((phi^(k-1)-psi^(k-1))/sqrt(5))/2^k));
a(n) = (1/2)(LerchPhi(phi/2,-n,-5)-LerchPhi(psi/2,-n,-5))/(2 sqrt(5));
a(n) = (1/2)Sum_{k=0..n} (binomial(n,k)A302922(k)(-6)^(n-k)).
Comments