A302926 Cumulants of a Fibonacci-geometric probability distribution.
0, 6, 22, 210, 2974, 56130, 1324222, 37489410, 1238235454, 46740118530, 1984855550782, 93653819396610, 4860878501987134, 275227990564092930, 16882335978752910142, 1115211301788480951810, 78930528072274523870014, 5958837996496319756259330
Offset: 0
Keywords
Examples
a(0)=0 is the 0th cumulant of the distribution. The 0th cumulant is always zero. a(1)=6 is the 1st cumulant, which is always the mean. a(2)=22 is the 2nd cumulant, which is always the variance.
Links
- Albert Gordon Smith, Table of n, a(n) for n = 0..300
- Christopher Genovese, Double Heads
Crossrefs
Programs
-
Mathematica
Module[{max, r, g}, max = 17; r = Range[0, max]; g[x_] := x^2/(4 - 2 x - x^2); r! CoefficientList[Normal[Series[Log[g[Exp[x]]], {x, 0, max}]], x] ]
Formula
E.g.f.: log(g(e^x)) where g(x) = x^2/(4-2x-x^2) is the g.f. for the probability distribution.
Comments