This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302935 #11 Jul 21 2021 00:44:21 %S A302935 1,2,10,84,1155,25740,471240,14549535,535422888 %N A302935 Unitary highly composite deficient numbers: unitary deficient numbers k whose number of unitary divisors ud(k) > ud(m) for all unitary deficient numbers m < k. %C A302935 The record numbers of unitary divisors are 1, 2, 4, 8, 16, 32, 64, 128, 256, ... %C A302935 The unitary version of A302934. %t A302935 usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; udiv[n_] := 2^PrimeNu[n]; dm = 0; Do[sig = usigma[n]; If[sig >= 2 n, Continue[]]; d = udiv[n]; If[d > dm, Print[n]; dm = d], {n, 1, 1000000000}] %o A302935 (PARI) nbud(n) = 1<<omega(n); %o A302935 usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)); %o A302935 lista(nn) = {my(maxd = 0); for(n=1, nn, if ((usigma(n) < 2*n) && (nbud(n) > maxd), print1(n, ", "); maxd = nbud(n);););} \\ _Michel Marcus_, Apr 17 2018 %Y A302935 Cf. A034444, A034448, A129487, A302934. %K A302935 nonn,more %O A302935 1,2 %A A302935 _Amiram Eldar_, Apr 16 2018