This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302942 #5 Feb 16 2025 08:33:53 %S A302942 0,4,54,490,4050,32674,261954,2096770,16776450,134216194,1073738754, %T A302942 8589928450,68719464450,549755789314,4398046461954,35184371990530, %U A302942 281474976514050,2251799813292034,18014398508695554,144115188074283010,1152921504603701250,9223372036848484354 %N A302942 a(n) = (2^n-1)^2*(2^n + 2). %C A302942 a(n) is also the number of total dominating sets in the complete tripartite graph K_{n,n,n} for n > 0. %H A302942 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteTripartiteGraph.html">Complete Tripartite Graph</a> %H A302942 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a> %H A302942 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-26,16). %F A302942 a(n) = A291703(n) for n > 1. %F A302942 a(n) = 11*a(n-1) - 26*a(n-2) + 16*a(n-3). %F A302942 G.f.: -2*x*(2 + 5*x)/(-1 + 11*x - 26*x^2 + 16*x^3). %t A302942 Table[(2^n - 1)^2 (2^n + 2), {n, 0, 30}] %t A302942 LinearRecurrence[{11, -26, 16}, {4, 54, 490}, {0, 20}] %t A302942 CoefficientList[Series[-((2 x (2 + 5 x))/(-1 + 11 x - 26 x^2 + 16 x^3)), {x, 0, 20}], x] %Y A302942 Cf. A291703. %K A302942 nonn %O A302942 0,2 %A A302942 _Eric W. Weisstein_, Apr 16 2018