A302949 Number of nX4 0..1 arrays with every element equal to 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
2, 46, 519, 6531, 80589, 998670, 12365841, 153141597, 1896492042, 23486107930, 290851104799, 3601890066510, 44605681284501, 552395208564836, 6840843079654058, 84716763151740480, 1049129453065059314
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..1. .0..0..1..0. .0..1..0..0. .0..1..0..1. .0..0..0..0 ..0..0..1..1. .1..1..0..0. .1..0..0..0. .0..0..1..0. .1..0..1..0 ..0..0..0..1. .1..0..0..1. .0..1..0..0. .0..1..0..0. .0..1..0..1 ..0..0..1..0. .1..0..1..0. .0..0..0..1. .0..1..0..0. .0..0..1..1 ..1..1..0..0. .0..1..0..1. .1..1..1..0. .1..0..1..0. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302953.
Formula
Empirical: a(n) = 9*a(n-1) +41*a(n-2) +29*a(n-3) -181*a(n-4) -466*a(n-5) -225*a(n-6) +66*a(n-7) +298*a(n-8) -52*a(n-9) +57*a(n-10) -10*a(n-11) -25*a(n-12) +4*a(n-13)
Comments