A302953 T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
0, 1, 0, 1, 3, 0, 2, 15, 11, 0, 3, 46, 86, 34, 0, 5, 161, 519, 587, 111, 0, 8, 601, 3626, 6531, 3815, 361, 0, 13, 2208, 26167, 87901, 80589, 25131, 1172, 0, 21, 8053, 185810, 1248691, 2104533, 998670, 164916, 3809, 0, 34, 29415, 1317541, 17374552, 58679318
Offset: 1
Examples
Some solutions for n=5, k=4 ..0..1..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..0. .0..0..0..1 ..1..0..0..0. .0..0..0..1. .1..0..1..0. .1..0..1..1. .0..0..1..1 ..1..0..0..0. .1..1..1..0. .0..0..0..1. .0..0..1..0. .1..1..0..1 ..0..1..1..0. .1..1..0..1. .1..1..1..0. .0..0..0..0. .1..0..1..1 ..1..1..0..1. .0..0..1..1. .0..0..1..1. .0..1..1..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..219
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: a(n) = 4*a(n-1) +15*a(n-2) +13*a(n-3) -2*a(n-4) -19*a(n-5) -3*a(n-6) +4*a(n-8)
k=4: [order 13]
k=5: [order 43] for n>44
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
n=3: [order 7] for n>9
n=4: [order 24] for n>25
n=5: [order 73] for n>74
Comments